Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 51, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168093

ABSTRACT

Linking clinical multi-omics with mechanistic studies may improve the understanding of rare cancers. We leverage two precision oncology programs to investigate rhabdomyosarcoma with FUS/EWSR1-TFCP2 fusions, an orphan malignancy without effective therapies. All tumors exhibit outlier ALK expression, partly accompanied by intragenic deletions and aberrant splicing resulting in ALK variants that are oncogenic and sensitive to ALK inhibitors. Additionally, recurrent CKDN2A/MTAP co-deletions provide a rationale for PRMT5-targeted therapies. Functional studies show that FUS-TFCP2 blocks myogenic differentiation, induces transcription of ALK and truncated TERT, and inhibits DNA repair. Unlike other fusion-driven sarcomas, TFCP2-rearranged tumors exhibit genomic instability and signs of defective homologous recombination. DNA methylation profiling demonstrates a close relationship with undifferentiated sarcomas. In two patients, sarcoma was preceded by benign lesions carrying FUS-TFCP2, indicating stepwise sarcomagenesis. This study illustrates the potential of linking precision oncology with preclinical research to gain insight into the classification, pathogenesis, and therapeutic vulnerabilities of rare cancers.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Multiomics , Precision Medicine , Transcription Factors/genetics , Sarcoma/genetics , Sarcoma/therapy , Sarcoma/diagnosis , RNA-Binding Protein EWS/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/therapy , Receptor Protein-Tyrosine Kinases , Biomarkers, Tumor/genetics , Oncogene Proteins, Fusion/genetics , Protein-Arginine N-Methyltransferases , DNA-Binding Proteins/genetics
2.
Leukemia ; 37(7): 1474-1484, 2023 07.
Article in English | MEDLINE | ID: mdl-37161070

ABSTRACT

The persistence of leukemic stem cells (LSCs) represents a problem in the therapy of chronic myeloid leukemia (CML). Hence, it is of utmost importance to explore the underlying mechanisms to develop new therapeutic approaches to cure CML. Using the genetically engineered ScltTA/TRE-BCR::ABL1 mouse model for chronic phase CML, we previously demonstrated that the loss of the docking protein GAB2 counteracts the infiltration of mast cells (MCs) in the bone marrow (BM) of BCR::ABL1 positive mice. Here, we show for the first time that BCR::ABL1 drives the cytokine independent expansion of BM derived MCs and sensitizes them for FcεRI triggered degranulation. Importantly, we demonstrate that genetic mast cell deficiency conferred by the Cpa3Cre allele prevents BCR::ABL1 induced splenomegaly and impairs the production of pro-inflammatory cytokines. Furthermore, we show in CML patients that splenomegaly is associated with high BM MC counts and that upregulation of pro-inflammatory cytokines in patient serum samples correlates with tryptase levels. Finally, MC-associated transcripts were elevated in human CML BM samples. Thus, our study identifies MCs as essential contributors to disease progression and suggests considering them as an additional target in CML therapy. Mast cells play a key role in the pro-inflammatory tumor microenvironment of the bone marrow. Shown is a cartoon summarizing our results from the mouse model. BCR::ABL1 transformed MCs, as part of the malignant clone, are essential for the elevation of pro-inflammatory cytokines, known to be important in disease initiation and progression.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Mice , Animals , Mast Cells/metabolism , Splenomegaly/etiology , Splenomegaly/prevention & control , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Cytokines , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Disease Models, Animal , Protein Kinase Inhibitors/therapeutic use , Tumor Microenvironment
3.
PLoS Pathog ; 7(10): e1002331, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22046132

ABSTRACT

Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.


Subject(s)
Antiviral Agents/therapeutic use , Cyclophilins/metabolism , Severe Acute Respiratory Syndrome/drug therapy , Severe acute respiratory syndrome-related coronavirus/pathogenicity , Animals , Caco-2 Cells , Chlorocebus aethiops , Cyclophilins/antagonists & inhibitors , Cyclophilins/drug effects , Cyclosporine/pharmacology , HEK293 Cells , Host-Pathogen Interactions , Humans , Jurkat Cells , Protease Inhibitors/pharmacology , Protein Interaction Mapping , Severe acute respiratory syndrome-related coronavirus/drug effects , Two-Hybrid System Techniques , Vero Cells , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...