Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(8): e2205512, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670061

ABSTRACT

Smart, responsive materials are required in various advanced applications ranging from anti-counterfeiting to autonomous sensing. Colloidal crystals are a versatile material class for optically based sensing applications owing to their photonic stopband. A careful combination of materials synthesis and colloidal mesostructure rendered such systems helpful in responding to stimuli such as gases, humidity, or temperature. Here, an approach is demonstrated to simultaneously and independently measure the time and temperature solely based on the inherent material properties of complex colloidal crystal mixtures. An array of colloidal crystals, each featuring unique film formation kinetics, is fabricated. Combined with machine learning-enabled image analysis, the colloidal crystal arrays can autonomously record isothermal heating events - readout proceeds by acquiring photographs of the applied sensor using a standard smartphone camera. The concept shows how the progressing use of machine learning in materials science has the potential to allow non-classical forms of data acquisition and evaluation. This can provide novel insights into multiparameter systems and simplify applications of novel materials.

2.
Adv Mater ; 35(7): e2208745, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36366915

ABSTRACT

Colloidal crystals and glasses manipulate light propagation depending on their chemical composition, particle morphology, and mesoscopic structure. This light-matter interaction has been intensely investigated, but a knowledge gap remains for mesostructures comprising a continuous property gradient of the constituting particles. Here, a general synthetic approach to bottom-up fabrication of continuous size gradient colloidal ensembles is introduced. First, the technique synthesizes a dispersion with a specifically designed gradual particle size distribution. Second, self-assembly of this dispersion yields a photonic colloidal glass with a continuous size gradient from top to bottom. Local and bulk characterization methods are used to highlight the significant potential of this mesostructure, resulting in vivid structural colors along, and in superior light scattering across the gradient. The process describes a general pathway to mesoscopic gradients. It can expectedly be transferred to a variety of other particle-based systems where continuous gradients will provide novel physical insights and functionalities.

3.
ACS Appl Nano Mater ; 5(3): 4119-4129, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35372797

ABSTRACT

Layered nanomaterials fascinate researchers for their mechanical, barrier, optical, and transport properties. Nacre is a biological example thereof, combining excellent mechanical properties by aligned submicron inorganic platelets and nanoscale proteinic interlayers. Mimicking nacre with advanced nanosheets requires ultraconfined organic layers aimed at nacre-like high reinforcement fractions. We describe inorganic/polymer hybrid Bragg stacks with one or two fluorohectorite clay layers alternating with one or two poly(ethylene glycol) layers. As indicated by X-ray diffraction, perfect one-dimensional crystallinity allows for homogeneous single-phase materials with up to a 84% clay volume fraction. Brillouin light spectroscopy allows the exploration of ultimate mechanical moduli without disturbance by flaws, suggesting an unprecedentedly high Young's modulus of 162 GPa along the aligned clays, indicating almost ideal reinforcement under these conditions. Importantly, low heat conductivity is observed across films, κ⊥ = 0.11-0.15 W m-1 K-1, with a high anisotropy of κ∥/κ⊥ = 28-33. The macroscopic mechanical properties show ductile-to-brittle change with an increase in the clay volume fraction from 54% to 70%. Conceptually, this work reveals the ultimate elastic and thermal properties of aligned layered clay nanocomposites in flaw-tolerant conditions.

4.
Adv Mater ; 33(40): e2101948, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34418180

ABSTRACT

Manipulation-free and autonomous recording of temperature states for extended periods of time is of increasing importance for food spoilage and battery safety assessment. An optical readout is preferred for low-tech visual inspection. Here, a concept for time-temperature integrators based on colloidal crystals is introduced. Two unique features in this class of advanced materials are combined: 1) the film-formation kinetics can be controlled by orders of magnitude based on mixtures of particles with distinct glass transition temperatures. 2) A gradual variation of the particle mixture along a linear gradient of the colloidal crystal enables local readout. Tailor-made latex particles of identical size but different glass transition temperatures provide a homogenous photonic stopband. The disappearance of this opalescence is directly related to the local particle ratio and the exposure to a time and temperature combination. This sensing material can be adjusted to report extended intermediate and short excessive temperature events, which makes it specifically suitable for long-term tracing and threshold applications.

5.
ACS Appl Mater Interfaces ; 12(16): 18785-18791, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32208644

ABSTRACT

Directional control on material properties such as mechanical moduli or thermal conductivity are of paramount importance for the development of nanostructured next-generation devices. Two-dimensional materials are particularly interesting in this context owing to their inherent structural anisotropy. Here, we compare graphene oxide (GO) and synthetic clay sodium fluorohectorite (Hec) with respect to their thermal transport properties. The unique sheet structure of both allows preparation of highly ordered Bragg stacks of these pure materials. The thermal conductivity parallel to the platelets strongly exceeds that perpendicular to them. We find a significant difference in the performance between GO and synthetic clay. Our analysis of the textured structure, size of the platelets, and chemical composition shows that Hec is a superior two-dimensional component to GO. Consequently, synthetic clay is a promising material for thermal management applications in electronic devices where electrically insulating materials are prerequisites.

SELECTION OF CITATIONS
SEARCH DETAIL
...