Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38004483

ABSTRACT

Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit resistance against BLU-285 and thus require other treatment strategies. This can be addressed by employing a drug delivery system that transports a combination of drugs with distinct cell targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels (NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with inverse electron-demand Diels-Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol. The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1 family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore, multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R cells, demonstrating the utility of this carrier system.

2.
Int J Pharm ; 642: 123158, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37336299

ABSTRACT

Induced angiogenesis, a specific hallmark of cancer, plays a vital role in tumor progression and can be targeted by inhibitors like sunitinib. Sunitinib is a small hydrophobic molecule suffering from low bioavailability and a short half-life in the bloodstream. To overcome these drawbacks, suitable drug delivery systems need to be developed. In this work dendritic polyglycerol (dPG), a well-known polymer, was functionalized with a sheddable shell. Therefore, aliphatic chains of different lengths (C5, C9, C11) were coupled to dPG through a cleavable ester bond. To restore water solubility and improve tumor targeting, the surface was decorated with sulfate groups. The resulting shell-sheddable dPG sulfates were characterized and evaluated regarding their loading capacity and biocompatibility in cell culture. The nine-carbon chain derivative (dPG-TNS) was selected as the best candidate for further experiments due to its high drug loading capacity (20 wt%), and a sustained release in vitro. The cellular biocompatibility of the blank carrier up to 1 mg/mL was confirmed after 24 h incubation on HeLa cells. Furthermore, the shell-cleavability of dPG-TNS under different physiological conditions was shown in a degradation study over four weeks. The activity of sunitinib-loaded dPG-TNS was demonstrated in a tube formation assay on Human umbilical vein endothelial cells (HUVECs). Our results suggest that the drug-loaded nanocarrier is a promising candidate to be further investigated in tumor treatments, as it shows similar efficacy to free sunitinib while overcoming its limitations.


Subject(s)
Endothelial Cells , Sulfates , Humans , Sunitinib , HeLa Cells , Polymers/chemistry , Cell Line, Tumor
3.
Pharmaceutics ; 13(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34452237

ABSTRACT

The sensitivity of therapeutic proteins is a challenge for their use in biomedical applications, as they are prone to degradation and opsonization, thus limiting their potential. This demands for the development of drug delivery systems shielding proteins and releasing them at the site of action. Here, we describe the synthesis of novel polyglycerol-based redox-responsive nanogels and report on their potential as nanocarrier systems for the delivery of cytochrome C (CC). This system is based on an encapsulation protocol of the therapeutic protein into the polymer network. NGs were formed via inverse nanoprecipitation using inverse electron-demand Diels-Alder cyclizations (iEDDA) between methyl tetrazines and norbornenes. Coprecipitation of CC led to high encapsulation efficiencies. Applying physiological reductive conditions of l-glutathione (GSH) led to degradation of the nanogel network, releasing 80% of the loaded CC within 48 h while maintaining protein functionality. Cytotoxicity measurements revealed high potency of CC-loaded NGs for various cancer cell lines with low IC50 values (up to 30 µg·mL-1), whereas free polymer was well tolerated up to a concentration of 1.50 mg·mL-1. Confocal laser scanning microscopy (CLSM) was used to monitor internalization of free and CC-loaded NGs and demonstrate the protein cargo's release into the cytosol.

4.
Macromol Rapid Commun ; 41(1): e1900510, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31750985

ABSTRACT

Alternatives for strain-promoted azide-alkyne cycloaddition (SPAAC) chemistries are needed because of the employment of expensive and not easily scalable precursors such as bicyclo[6.1.0]non-4-yne (BCN). Inverse electron demand Diels Alder (iEDDA)-based click chemistries, using dienophiles and tetrazines, offer a more bioorthogonal and faster toolbox, especially in the biomedical field. Here, the straightforward synthesis of dendritic polyglycerin dienophiles (dPG-dienophiles) and dPG-methyl-tetrazine (dPG-metTet) as macromonomers for a fast, stable, and scalable nanogel formation by inverse nanoprecipitation is reported. Nanogel size-influencing parameters are screened such as macromonomer concentration and water-to-acetone ratio are screened. dPG-norbonene and dPG-cyclopropene show fast and stable nanogel formation in the size range of 40-200 nm and are thus used for the coprecipitation of the model protein myoglobin. High encapsulation efficiencies of more than 70% at a 5 wt% feed ratio are obtained in both cases, showing the suitability of the mild gelation chemistry for the encapsulation of small proteins.


Subject(s)
Click Chemistry , Nanogels/chemistry , Bridged Bicyclo Compounds/chemistry , Cycloaddition Reaction , Heterocyclic Compounds/chemistry , Myoglobin/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...