Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(18): e202314143, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38179812

ABSTRACT

Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Camptothecin/chemistry , Tissue Distribution , Antineoplastic Agents/chemistry , Micelles , Proteins , Drug Delivery Systems , Nanoparticles/chemistry , Drug Liberation , Cell Line, Tumor
2.
Angew Chem Int Ed Engl ; 60(4): 1813-1820, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33022847

ABSTRACT

The scaffolding protein RbAp48 is part of several epigenetic regulation complexes and is overexpressed in a variety of cancers. In order to develop tool compounds for the study of RbAp48 function, we have developed peptide inhibitors targeting the protein-protein interaction interface between RbAp48 and the scaffold protein MTA1. Based on a MTA1-derived linear peptide with low micromolar affinity and informed by crystallographic analysis, a bicyclic peptide was developed that inhibits the RbAp48/MTA1 interaction with a very low nanomolar KD value of 8.56 nM, and which showed appreciable stability against cellular proteases. Design included exchange of a polar amide cyclization strategy to hydrophobic aromatic linkers enabling mono- and bicyclization by means of cysteine alkylation, which improved affinity by direct interaction of the linkers with a hydrophobic residue on RbAp48. Our results demonstrate that stepwise evolution of a structure-based design is a suitable strategy for inhibitor development targeting PPIs.


Subject(s)
Drug Design , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Retinoblastoma-Binding Protein 4/antagonists & inhibitors , Amino Acid Sequence , Circular Dichroism , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Mutation , Protein Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL