Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ 2D Mater Appl ; 7(1): 47, 2023.
Article in English | MEDLINE | ID: mdl-38665482

ABSTRACT

Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since in Mott materials the Coulomb interaction is responsible for the insulating state, manipulating the dielectric screening provides direct control over Mottness. Our many-body calculations reveal the spectroscopic fingerprints of such Coulomb engineering: we demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on our proof-of-principle calculations, we discuss the (feasible) conditions under which our scenario of Coulomb engineering of Mott materials can be realized experimentally.

2.
J Phys Condens Matter ; 31(46): 465603, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31362270

ABSTRACT

The theory of correlated electrons is currently moving beyond the paradigmatic Hubbard U, towards the investigation of intersite Coulomb interactions. Recent investigations have revealed that these interactions are relevant for the quantitative description of realistic materials. Physically, intersite interactions are responsible for two rather different effects: screening and bandwidth renormalization. We use a variational principle to disentangle the roles of these two processes and study how appropriate the recently proposed Fock treatment of intersite interactions is in correlated systems. The magnitude of this effect in graphene is calculated based on cRPA values of the intersite interaction. We also apply the variational principle to benzene and find effective parameters comparable to those obtained by ab initio density matrix downfolding.

3.
Nano Lett ; 17(11): 6721-6726, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28978200

ABSTRACT

We analyze the interplay of spin-valley coupling, orbital physics, and magnetic anisotropy taking place at single magnetic atoms adsorbed on semiconducting transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se). Orbital selection rules turn out to govern the kinetic exchange coupling between the adatom and charge carriers in the MX2 and lead to highly orbitally dependent spin-flip scattering rates, as we illustrate for the example of transition metal adatoms with d9 configuration. Our ab initio calculations suggest that d9 configurations are realizable by single Co, Rh, or Ir adatoms on MoS2, which additionally exhibit a sizable magnetic anisotropy. We find that the interaction of the adatom with carriers in the MX2 allows to tune its behavior from a quantum regime with full Kondo screening to a regime of "Ising spintronics" where its spin-orbital moment acts as classical bit, which can be erased and written electronically and optically.

SELECTION OF CITATIONS
SEARCH DETAIL
...