Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 67(10): 2936-2945, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30781951

ABSTRACT

Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. We describe a thermostable alginate lyase belonging to Polysaccharide Lyase family 7 (PL7), which can be used to degrade brown seaweed, Saccharina latissima, at conditions also suitable for a commercial cellulase cocktail (Cellic CTec2). This enzyme, AMOR_PL7A, is a ß-d-mannuronate specific (EC 4.2.2.3) endoacting alginate lyase, which degrades alginate and poly mannuronate within a broad range of pH, temperature and salinity. At 65 °C and pH 6.0, its Km and kcat values for sodium alginate are 0.51 ± 0.09 mg/mL and 7.8 ± 0.3 s-1 respectively. Degradation of seaweed with blends of Cellic CTec2 and AMOR_PL7A at 55 °C in seawater showed that the lyase efficiently reduces viscosity and increases glucose solublization. Thus, AMOR_PL7A may be useful in development of efficient protocols for enzymatic seaweed processing.


Subject(s)
Bacteria/enzymology , Bacterial Proteins/chemistry , Hydrothermal Vents/microbiology , Polysaccharide-Lyases/chemistry , Arctic Regions , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Enzyme Stability , Hydrogen-Ion Concentration , Hydrothermal Vents/chemistry , Kinetics , Metagenomics , Phaeophyceae/chemistry , Phylogeny , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Polysaccharides/chemistry , Seaweed/chemistry , Substrate Specificity , Temperature
2.
Food Sci Nutr ; 5(6): 1072-1078, 2017 11.
Article in English | MEDLINE | ID: mdl-29188034

ABSTRACT

Sweet potato (Ipomoea batatas L.) roots contain amylolytic enzymes, which hydrolyze starch thus having the potential to affect the viscosity of sweet potato porridges provided the appropriate working conditions for the enzymes are attained. In this study, the effect of sweet potato variety, postharvest handling conditions, freshly harvested and room/ambient stored roots (3 weeks), and slurry solids content on the viscoelastic properties of complementary porridges prepared using amylase enzyme activation technique were investigated. Five temperatures (55°C, 65°C, 70°C, 75°C, and 80°C) were used to activate sweet potato amylases and the optimum temperature was found to be 75°C. Stored sweet potato roots had higher soluble solids (°Brix) content in the pastes compared to fresh roots. In all samples, activation of amylases at 75°C caused changes in the viscoelastic parameters: phase angle (tan δ) and complex viscosity (η*). Postharvest handling conditions and slurry solids content significantly affected the viscoelastic properties of the porridges with flours from stored roots yielding viscous (liquid-like) porridges and fresh roots producing elastic (solid-like) porridges. Increase in slurry solids content caused reduction in the phase angle values and increase in the viscosity of the sweet potato porridges. The viscosity of the porridges decreased with storage of sweet potato roots. These results provide a possibility for exploiting sweet potato endogenous amylases in the preparation of complementary porridges with both drinkable viscosities and appropriate energy and nutrient densities for children with varying energy needs.

3.
J Dairy Sci ; 99(8): 6164-6179, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27265169

ABSTRACT

The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: ß-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C.


Subject(s)
Filtration/methods , Milk Proteins/isolation & purification , Milk/chemistry , Animals , Blood Proteins , Caseins/analysis , Ceramics , Chemical Fractionation/instrumentation , Chemical Fractionation/methods , Filtration/instrumentation , Food Handling/methods , Membranes, Artificial , Milk Proteins/analysis , Pressure , Temperature , Whey Proteins/analysis , Whey Proteins/isolation & purification
4.
Food Chem ; 165: 104-12, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25038655

ABSTRACT

In this study, we analysed the impact of carboxymethylcellulose (CMC) on lipid digestion and physicochemical properties of whey proteins (WP)-stabilised emulsions during in vitro digestion with either artificial or human gastrointestinal juices. The emulsions were made by adsorbing WP on the fat droplets and subsequently adding CMC, which does not interact with the adsorbed proteins. The limited hydrolysis of lipids and their higher physical stability was recorded for WP-stabilised emulsions in the presence of CMC under simulated gastrointestinal conditions. The possible mechanism by which CMC lowers the digestion of WP-stabilised emulsions is related to the limited interaction of fat droplets with gastrointestinal fluids due to the extended thickening network formed by CMC in the continuous phase. The digestion of WP- and CMC-stabilised emulsions in the in vitro model with human gastric fluids led to greater lipid hydrolysis, although the enzymatic activity in both in vitro models was observed at the same level.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Emulsions/chemistry , Gastric Juice/metabolism , Whey Proteins/chemistry , Digestion , Gastric Juice/chemistry , Humans , Lipids/chemistry
5.
Food Sci Nutr ; 2(2): 114-31, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24804070

ABSTRACT

Fermented pastes of soybeans and soybean-maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans.

6.
Appl Environ Microbiol ; 78(15): 5220-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22610432

ABSTRACT

Amylolytic lactic acid bacteria (ALAB) can potentially replace malt in reducing the viscosity of starchy porridges. However, the drawback of using ALAB is their low and delayed amylolytic activity. This necessitates searching for efficient ALAB and strategies to improve their amylolytic activity. Two ALAB, Lactobacillus plantarum MNC 21 and Lactococcus lactis MNC 24, isolated from Obushera, were used to ferment starches in MRS broth: sorghum, millet, sweet potato, and commercial soluble starch. The amylolytic activity of MNC 21 was comparable to that of the ALAB collection strain Lb. plantarum A6, while that of MNC 24 was extremely low. MNC 21, MNC 24, and their coculture were compared to A6 and sorghum malt for ability to ferment and reduce the viscosity of sorghum porridge (11.6% dry matter). ALAB and the coculture lowered the pH from 6.2 to <4.5 within 12 h, while malt as a carrier of wild starter took about 20 h. Coculturing increased lactic acid yield by 46% and 76.8% compared to the yields of MNC 21 and MNC 24 monocultures, respectively. The coculture accumulated significantly larger (P < 0.05) amounts of maltose and diacetyl than the monocultures. Sorghum malt control and the coculture hydrolyzed more starch in sorghum porridge than the monocultures. The coculture initiated changes in the rheological parameters storage modulus (G'), loss modulus (G″), phase angle (δ), and complex viscosity (η*) earlier than its constituent monocultures. The shear viscosity of sorghum porridge was reduced significantly (P < 0.05) from 1950 cP to 110 cP (malt), 281 cP (coculture), 382 cP (MNC 21), 713 cP (MNC 24), and 722 cP (A6). Coculturing strong ALAB with weak ALAB or non-ALAB can be exploited for preparation of nutrient-dense weaning foods and increasing lactic acid yield from starchy materials.


Subject(s)
Fermentation/physiology , Infant Food , Lactobacillus plantarum/physiology , Lactococcus lactis/physiology , Sorghum/metabolism , Analysis of Variance , Base Sequence , DNA Primers/genetics , Humans , Hydrogen-Ion Concentration , Infant, Newborn , Lactobacillus plantarum/genetics , Lactococcus lactis/genetics , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Rheology/methods , Sequence Analysis, DNA , Time Factors , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...