Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(3): 3088-96, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24552660

ABSTRACT

Nanostructured particles containing noble metals can have highly tunable localized surface plasmon resonances and are therefore of particular interest for numerous applications. Nanoshells comprising a dielectric core and gold or silver shell are a widely researched systems because of the strong dependence of their optical properties on the ratio of core diameter to shell thickness. Although seeded-growth procedures have been developed to produce these particles, the many reported studies show significant variation in the nanoshell morphologies and hence optical properties. In order to establish processes that reproducibly synthesize nanoshells with high optical quality, it is necessary to develop techniques that monitor changes at the core particle surface during shell growth. For that purpose, we have carried out in situ nonlinear second-harmonic scattering (SHS) and linear vis-NIR extinction spectroscopy simultaneously during the seeded growth of gold nanoshells on silica core particles. Our SHS measurements show a striking variation in the nonlinear optical properties of the growing gold nanoshells. In comparison with linear optical measurements and with scanning electron microscopy (SEM) images made of gold nanoshells produced with varying shell completenesses, the SHS signal was observed to reach a peak intensity at a stage prior to shell closure. We attribute this high sensitivity of the SHS signal to the incomplete nanoshell surface morphology to the generation and subsequent degeneration of regions of electric field enhancement at gaps between isolated gold islands, which grow and coalesce. This conclusion is corroborated by finite-difference time-domain simulations of incomplete nanoshells. We suggest that the in situ analytical approach demonstrated here offers significant promise for future activities regarding the in-process optimization of the morphology and optical properties of metal nanoshells and other nanostructured plasmonic particles.

2.
Langmuir ; 28(20): 7851-8, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22502600

ABSTRACT

The identification of defects and their controlled generation in titanate nanostructures is a key to their successful application in photoelectronic devices. We comprehensively explored the effect of vacuum annealing on morphology and composition of Na(2)Ti(3)O(7) nanowires and protonated H(2)Ti(3)O(7) nanoscrolls using a combination of scanning electron microscopy, Auger and Fourier-transform infrared (FT-IR) spectroscopy, as well as ab initio density functional theory (DFT) calculations. The observation that H(2)Ti(3)O(7) nanoscrolls are more susceptible to electronic reduction and annealing-induced n-type doping than Na(2)Ti(3)O(7) nanowires is attributed to the position of the conduction band minimum. It is close to the vacuum level and, thus, favors the Fermi level-induced compensation of donor states by cation vacancies. In agreement with theoretical predictions that suggest similar formation energies for oxygen and sodium vacancies, we experimentally observed the annealing induced depletion of sodium from the surface of the nanowires.

3.
Appl Opt ; 48(10): 1853-60, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19340138

ABSTRACT

The imaging and quantification of droplet sizes in sprays is a challenging task for optical scientists and engineers. Laser sheet dropsizing (LSDS) combines the two-dimensional information of two different optical processes, one that is proportional to the droplet volume and one that depends on the droplet surface, e.g., Mie scattering. Besides Mie scattering, here we use two-dimensional Raman scattering as the volume-dependent measurement technique. Two different calibration strategies are presented and discussed. Two-dimensional droplet size distributions in a spray have been validated in comparison with the results of point-resolved phase Doppler anemometry (PDA) measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...