Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(41): 28373-28381, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37842823

ABSTRACT

We study the Born-Oppenheimer dynamics within a model for a coupled electron-nuclear motion. Differential Shannon entropies are calculated from the time-dependent probability densities of the combined system and, using single particle densities, entropies for the electronic and nuclear degrees of freedom are derived. These functions provide information on details of the wave packet motion. From the entropies, we determine the mutual information which characterizes particle correlations. This quantity is compared to other measures of electron-nuclear entanglement. Numerical results are interpreted within an analytically solvable approach, and it is documented how these functions depend on properties of the Born-Oppenheimer wave function and, in particular, how dynamical effects like wave packet focusing and dispersion influence the correlation between the particles.

2.
Entropy (Basel) ; 25(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37509917

ABSTRACT

We calculate differential Shannon entropies derived from time-dependent coordinate-space and momentum-space probability densities. This is performed for a prototype system of a coupled electron-nuclear motion. Two situations are considered, where one is a Born-Oppenheimer adiabatic dynamics, and the other is a diabatic motion involving strong non-adiabatic transitions. The information about coordinate- and momentum-space dynamics derived from the total and single-particle entropies is discussed and interpreted with the help of analytical models. From the entropies, we derive mutual information, which is a measure for the electron-nuclear correlation. In the adiabatic case, it is found that such correlations are manifested differently in coordinate- and momentum space. For the diabatic dynamics, we show that it is possible to decompose the entropies into state-specific contributions.

3.
J Phys Chem Lett ; 14(2): 334-339, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36606543

ABSTRACT

We study differential Shannon entropies determined from position-space quantum probability densities in a coupled electron-nuclear system. In calculating electronic and nuclear entropies, one gains information about the localization of the respective particles and also about the correlation between them. For Born-Oppenheimer dynamics, the correlation decreases at times when the wave packet reaches the classical turning points of its motion. If a strong non-adiabtic coupling is present, leading to a large population transfer between different electronic states, the electronic entropy is approximately constant. Then the time dependence of the entropy reflects the information on the nucleus alone, and the correlation is absent. A decomposition of the entropy into contributions from the participating electronic states reveals insight into the state-specific population and nuclear wave packet localization.

4.
J Chem Phys ; 156(5): 054303, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135254

ABSTRACT

We investigate the quantum and classical wave packet dynamics in an harmonic oscillator that is perturbed by a disorder potential. This perturbation causes the dispersion of a Gaussian wave packet, which is reflected in the coordinate-space and the momentum-space Shannon entropies, the latter being a measure for the amount of information available on a system. Regarding the sum of the two quantities, one arrives at an entropy that is related to the coordinate-momentum uncertainty. Whereas in the harmonic case, this entropy is strictly periodic and can be evaluated analytically, this behavior is lost if disorder is added. There, at selected times, the quantum mechanical probability density resembles that of a classical oscillator distribution function, and the entropy assumes larger values. However, at later times and dependent on the degree of disorder and the chosen initial conditions, quantum mechanical revivals occur. Then, the observed effects are reversed, and the entropy may decrease close to its initial value. This effect cannot be found classically.

SELECTION OF CITATIONS
SEARCH DETAIL
...