Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 34(4): 2426-2436, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37831139

ABSTRACT

OBJECTIVES: Coronary computed tomography angiography (CCTA) has higher diagnostic accuracy than coronary artery calcium (CAC) score for detecting obstructive coronary artery disease (CAD) in patients with stable chest pain, while the added diagnostic value of combining CCTA with CAC is unknown. We investigated whether combining coronary CCTA with CAC score can improve the diagnosis of obstructive CAD compared with CCTA alone. METHODS: A total of 2315 patients (858 women, 37%) aged 61.1 ± 10.2 from 29 original studies were included to build two CAD prediction models based on either CCTA alone or CCTA combined with the CAC score. CAD was defined as at least 50% coronary diameter stenosis on invasive coronary angiography. Models were built by using generalized linear mixed-effects models with a random intercept set for the original study. The two CAD prediction models were compared by the likelihood ratio test, while their diagnostic performance was compared using the area under the receiver-operating-characteristic curve (AUC). Net benefit (benefit of true positive versus harm of false positive) was assessed by decision curve analysis. RESULTS: CAD prevalence was 43.5% (1007/2315). Combining CCTA with CAC improved CAD diagnosis compared with CCTA alone (AUC: 87% [95% CI: 86 to 89%] vs. 80% [95% CI: 78 to 82%]; p < 0.001), likelihood ratio test 236.3, df: 1, p < 0.001, showing a higher net benefit across almost all threshold probabilities. CONCLUSION: Adding the CAC score to CCTA findings in patients with stable chest pain improves the diagnostic performance in detecting CAD and the net benefit compared with CCTA alone. CLINICAL RELEVANCE STATEMENT: CAC scoring CT performed before coronary CTA and included in the diagnostic model can improve obstructive CAD diagnosis, especially when CCTA is non-diagnostic. KEY POINTS: • The combination of coronary artery calcium with coronary computed tomography angiography showed significantly higher AUC (87%, 95% confidence interval [CI]: 86 to 89%) for diagnosis of coronary artery disease compared to coronary computed tomography angiography alone (80%, 95% CI: 78 to 82%, p < 0.001). • Diagnostic improvement was mostly seen in patients with non-diagnostic C. • The improvement in diagnostic performance and the net benefit was consistent across age groups, chest pain types, and genders.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Female , Humans , Male , Calcium , Chest Pain/diagnosis , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Stenosis/diagnostic imaging , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Middle Aged , Aged
2.
Biotechniques ; 68(5): 279-282, 2020 05.
Article in English | MEDLINE | ID: mdl-32141771

ABSTRACT

Species of the genus Trichoderma are filamentous fungi commonly used in research, industry and agriculture. Trichoderma reesei strains are prominent producers of cellulolytic and hemicellulolytic enzymes as well as being expression hosts; several other species such as T. atroviride might be exploited as biocontrol agents. A careful preparation of Trichoderma inocula, which consists mainly of conidia (asexual spores), is of immense importance. Conidia concentration is still mostly determined with the help of a hemocytometer; however, as a more accurate and time-saving alternative, absorbance can be used to estimate fungal spore counts. We established a spectrophotometric method for fast and reliable preparation of Trichoderma inocula by evaluating the effect of size, shape and pigmentation of the conidia at different wavelengths.


Subject(s)
Colony Count, Microbial/methods , Spectrophotometry/methods , Spores, Fungal , Trichoderma , Spores, Fungal/cytology , Spores, Fungal/physiology , Trichoderma/cytology , Trichoderma/physiology
3.
Appl Microbiol Biotechnol ; 102(6): 2477-2492, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29411063

ABSTRACT

The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.


Subject(s)
Fungi/enzymology , Lignin/metabolism , Oxidoreductases/metabolism , Biotransformation , Fungi/genetics , Hydrogen Peroxide/metabolism , Hydroquinones/metabolism , Oxidoreductases/genetics , Phylogeny , Sequence Homology
4.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28762722

ABSTRACT

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Heme/metabolism , Peroxidase/metabolism , Protein Processing, Post-Translational/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Heme/chemistry , Heme/genetics , Ligands , Peroxidase/chemistry , Peroxidase/genetics
5.
J Biol Chem ; 289(45): 31480-91, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25246525

ABSTRACT

The most striking feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO) is the existence of covalent bonds between the prosthetic group and the protein, which has a strong impact on their (electronic) structure and biophysical and chemical properties. Recently, a novel bacterial heme peroxidase with high structural and functional similarities to LPO was described. Being released from Escherichia coli, it contains mainly heme b, which can be autocatalytically modified and covalently bound to the protein by incubation with hydrogen peroxide. In the present study, we investigated the reactivity of these two forms in their ferric, compound I and compound II state in a multi-mixing stopped-flow study. Upon heme modification, the reactions between the ferric proteins with cyanide or H2O2 were accelerated. Moreover, apparent bimolecular rate constants of the reaction of compound I with iodide, thiocyanate, bromide, and tyrosine increased significantly and became similar to LPO. Kinetic data are discussed and compared with known structure-function relationships of the mammalian peroxidases LPO and myeloperoxidase.


Subject(s)
Escherichia coli/enzymology , Heme/chemistry , Peroxidase/chemistry , Peroxidases/chemistry , Bromides/chemistry , Catalysis , Cyanides/chemistry , Electrons , Horseradish Peroxidase/chemistry , Hydrogen Peroxide/chemistry , Iodides/chemistry , Iron/chemistry , Lactoperoxidase/chemistry , Models, Chemical , Oxidation-Reduction , Oxygen/chemistry , Protein Binding , Protein Processing, Post-Translational , Spectrophotometry , Thiocyanates/chemistry , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...