Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28202494

ABSTRACT

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Subject(s)
Fumarate Hydratase/physiology , Hematopoietic Stem Cells/physiology , Animals , Female , Fumarates/metabolism , Hematopoiesis , Histones/metabolism , Leukemia, Myeloid, Acute/etiology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-E2-Related Factor 2/physiology , Oxygen Consumption
2.
J Exp Med ; 212(13): 2223-34, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26642852

ABSTRACT

Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Progression , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Models, Animal , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Molecular Sequence Data , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
3.
N Engl J Med ; 370(11): 1019-28, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24571724

ABSTRACT

BACKGROUND: Corticotropin-independent Cushing's syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS: We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS: Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushing's syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS: Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).


Subject(s)
Adenoma/genetics , Adrenal Gland Neoplasms/genetics , Adrenal Hyperplasia, Congenital/genetics , Cushing Syndrome/etiology , Cyclic AMP-Dependent Protein Kinases/genetics , Germ-Line Mutation , Adenoma/complications , Adenoma/enzymology , Adrenal Gland Neoplasms/complications , Adrenal Gland Neoplasms/enzymology , Adult , Catalytic Domain , Cushing Syndrome/enzymology , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Exome , Humans , Hydrocortisone/biosynthesis , Middle Aged , Mutation , Protein Conformation , Sequence Analysis, DNA
4.
Cancer Cell ; 13(6): 507-18, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18538734

ABSTRACT

Immune responses may arrest tumor growth by inducing tumor dormancy. The mechanisms leading to either tumor dormancy or promotion of multistage carcinogenesis by adaptive immunity are poorly characterized. Analyzing T antigen (Tag)-induced multistage carcinogenesis in pancreatic islets, we show that Tag-specific CD4+ T cells home selectively into the tumor microenvironment around the islets, where they either arrest or promote transition of dysplastic islets into islet carcinomas. Through combined TNFR1 signaling and IFN-gamma signaling, Tag-specific CD4+ T cells induce antiangiogenic chemokines and prevent alpha(v)beta(3) integrin expression, tumor angiogenesis, tumor cell proliferation, and multistage carcinogenesis, without destroying Tag-expressing islet cells. In the absence of either TNFR1 signaling or IFN-gamma signaling, the same T cells paradoxically promote angiogenesis and multistage carcinogenesis. Thus, tumor-specific T cells can directly survey multistage carcinogenesis through cytokine signaling.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Insulinoma/immunology , Interferon-gamma/metabolism , Pancreatic Neoplasms/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Animals , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Blood Glucose/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , Cell Movement , Cell Survival , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Immunotherapy/methods , Insulinoma/blood supply , Insulinoma/genetics , Insulinoma/metabolism , Insulinoma/pathology , Insulinoma/therapy , Integrin alphaVbeta3/metabolism , Mice , Mice, Inbred C3H , Mice, Knockout , Mice, Transgenic , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Pancreatic Neoplasms/blood supply , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Th1 Cells/immunology , Th1 Cells/pathology , Time Factors , Whole-Body Irradiation
SELECTION OF CITATIONS
SEARCH DETAIL
...