Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Small ; 18(28): e2200059, 2022 07.
Article in English | MEDLINE | ID: mdl-35718881

ABSTRACT

Packing biomolecules inside virus capsids has opened new avenues for the study of molecular function in confined environments. These systems not only mimic the highly crowded conditions in nature, but also allow their manipulation at the nanoscale for technological applications. Here, green fluorescent proteins are packed in virus-like particles derived from P22 bacteriophage procapsids. The authors explore individual virus cages to monitor their emission signal with total internal reflection fluorescence microscopy while simultaneously changing the microenvironment with the stylus of atomic force microscopy. The mechanical and electronic quenching can be decoupled by ≈10% each using insulator and conductive tips, respectively. While with conductive tips the fluorescence quenches and recovers regardless of the structural integrity of the capsid, with the insulator tips quenching only occurs if the green fluorescent proteins remain organized inside the capsid. The electronic quenching is associated with the coupling of the protein fluorescence emission with the tip surface plasmon resonance. In turn, the mechanical quenching is a consequence of the unfolding of the aggregated proteins during the mechanical disruption of the capsid.


Subject(s)
Single Molecule Imaging , Viral Proteins , Capsid/chemistry , Capsid Proteins/chemistry , Green Fluorescent Proteins , Microscopy, Atomic Force , Viral Proteins/chemistry
2.
FEBS J ; 286(20): 4074-4085, 2019 10.
Article in English | MEDLINE | ID: mdl-31199077

ABSTRACT

Deformation of the plasma membrane into clathrin-coated vesicles is a critical step in clathrin-mediated endocytosis and requires the orchestrated assembly of clathrin and endocytic adaptors into a membrane-associated protein coat. The individual role of these membrane-bending and curvature-stabilizing factors is subject to current debate. As such, it is unclear whether the clathrin coat itself is stiff enough to impose curvature and if so, whether this could be effectively transferred to the membrane by the linking adaptor proteins. We have recently demonstrated that clathrin alone is sufficient to form membrane buds in vitro. Here, we use atomic force microscopy to assess the contributions of clathrin and its membrane adaptor protein 2 (AP2) to clathrin coat stiffness, which determines the mechanics of vesicle formation. We found that clathrin coats are less than 10-fold stiffer than the membrane they enclose, suggesting a delicate balance between the forces harnessed from clathrin coat formation and those required for membrane bending. We observed that clathrin adaptor protein AP2 increased the stiffness of coats formed from native clathrin, but did not affect less-flexible coats formed from clathrin lacking the light chain subunits. We thus propose that clathrin light chains are important for clathrin coat flexibility and that AP2 facilitates efficient cargo sequestration during coated vesicle formation by modulating clathrin coat stiffness.


Subject(s)
Adaptor Protein Complex 2/metabolism , Brain/metabolism , Cell Membrane/metabolism , Clathrin-Coated Vesicles/chemistry , Clathrin-Coated Vesicles/metabolism , Clathrin/metabolism , Endocytosis , Animals , Protein Binding , Sus scrofa
3.
J Phys D Appl Phys ; 51(44): 443001, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30799880

ABSTRACT

Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.

4.
Sci Rep ; 7(1): 8116, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28808261

ABSTRACT

During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus.


Subject(s)
Cell Nucleus/physiology , Animals , Cell Line , Cell Line, Tumor , Chromatin/physiology , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Mammals/physiology , Microscopy, Atomic Force/methods , Rheology , Signal Transduction/physiology , Transcription, Genetic/physiology
5.
Biochem Soc Trans ; 45(2): 499-511, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28408490

ABSTRACT

Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.


Subject(s)
Viral Proteins/metabolism , Viruses/ultrastructure , Adsorption , Biomechanical Phenomena , Genome, Viral , Microscopy, Atomic Force/methods , Viruses/genetics
6.
Lab Chip ; 16(14): 2682-93, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27302661

ABSTRACT

Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 µm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.

7.
J Biol Chem ; 291(15): 7868-76, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26884341

ABSTRACT

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca(2+)acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca(2+)concentrations is likely to be important for Ca(2+)-regulated secretion.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Syntaxin 1/metabolism , Animals , Calcium/chemistry , PC12 Cells , Protein Structure, Tertiary , Rats
8.
Nano Lett ; 16(1): 237-42, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26605640

ABSTRACT

Success in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges. The neutral nanoparticles localize to cellular nuclei suggesting their potential use as an inexpensive, easily produced nucleus-specific label. The single particle study revealed that the carbon nanodots possess a unique hybrid combination of fluorescence properties exhibiting characteristics of both dye molecules and semiconductor nanocrystals. The results suggest that charge trapping and redistribution on the surface of the particles triggers their transitions between emissive and dark states. These findings open up new possibilities for the utilization of carbon nanodots in the various super-resolution microscopy methods based on stochastic optical switching.


Subject(s)
Carbon/chemistry , Molecular Imaging , Nanoparticles/chemistry , Cell Nucleus/ultrastructure , Fluorescent Dyes/chemistry , Microtubules/ultrastructure , Quantum Dots/chemistry
9.
ACS Nano ; 9(11): 10571-9, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26381363

ABSTRACT

Viruses package their genome in a robust protein coat to protect it during transmission between cells and organisms. In a reaction termed uncoating, the virus is progressively weakened during entry into cells. At the end of the uncoating process the genome separates, becomes transcriptionally active, and initiates the production of progeny. Here, we triggered the disruption of single human adenovirus capsids with atomic force microscopy and followed genome exposure by single-molecule fluorescence microscopy. This method allowed the comparison of immature (noninfectious) and mature (infectious) adenovirus particles. We observed two condensation states of the fluorescently labeled genome, a feature of the virus that may be related to infectivity. Beyond tracking the unpacking of virus genomes, this approach may find application in testing the cargo release of bioinspired delivery vehicles.


Subject(s)
Adenoviridae/genetics , Adenoviridae/physiology , Genome, Viral , Virus Assembly , Benzoxazoles/chemistry , Capsid/metabolism , Cell Line, Tumor , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Quinolinium Compounds/chemistry
10.
Nat Commun ; 6: 7523, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26146072

ABSTRACT

Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.


Subject(s)
Actin Cytoskeleton/physiology , Caenorhabditis elegans/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Neuropeptides/metabolism , Sarcomeres/metabolism , Animals , COS Cells , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chlorocebus aethiops , Gene Expression Regulation/physiology , Microscopy, Fluorescence , Neuropeptides/genetics , Promoter Regions, Genetic , Sarcomeres/chemistry , Sarcomeres/genetics
11.
Dev Cell ; 34(2): 139-151, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26166299

ABSTRACT

During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.


Subject(s)
Actins/metabolism , Central Nervous System/growth & development , Cofilin 1/metabolism , Destrin/metabolism , Myelin Sheath/physiology , Actin Cytoskeleton/physiology , Actins/biosynthesis , Animals , Axons/physiology , Cell Adhesion/physiology , Cell Membrane/physiology , Cells, Cultured , Central Nervous System/embryology , Cofilin 1/genetics , Destrin/genetics , Luminescent Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligodendroglia/cytology , Patch-Clamp Techniques , Surface Tension , Zebrafish , Red Fluorescent Protein
12.
Biophys J ; 108(10): 2541-2549, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25992732

ABSTRACT

Cowpea chlorotic mottle virus (CCMV) forms highly elastic icosahedral protein capsids that undergo a characteristic swelling transition when the pH is raised from 5 to 7. Here, we performed nano-indentation experiments using an atomic force microscope to track capsid swelling and measure the shells' Young's modulus at the same time. When we chelated Ca(2+) ions and raised the pH, we observed a gradual swelling of the RNA-filled capsids accompanied by a softening of the shell. Control experiments with empty wild-type virus and a salt-stable mutant revealed that the softening was not strictly coupled to the swelling of the protein shells. Our data suggest that a pH increase and Ca(2+) chelation lead primarily to a loosening of contacts within the protein shell, resulting in a softening of the capsid. This appears to render the shell metastable and make swelling possible when repulsive forces among the capsid proteins become large enough, which is known to be followed by capsid disassembly at even higher pH. Thus, softening and swelling are likely to play a role during inoculation.


Subject(s)
Bromovirus/chemistry , Capsid/chemistry , Elastic Modulus , Bromovirus/drug effects , Calcium/chemistry , Calcium Chelating Agents/pharmacology , Capsid/drug effects , Hydrogen-Ion Concentration
13.
Traffic ; 16(5): 519-33, 2015 May.
Article in English | MEDLINE | ID: mdl-25652138

ABSTRACT

Clathrin-dependent transport processes require the polymerization of clathrin triskelia into polygonal scaffolds. Together with adapter proteins, clathrin collects cargo and induces membrane bud formation. It is not known to what extent clathrin light chains affect the structural and functional properties of clathrin lattices and the ability of clathrin to deform membranes. To address these issues, we have developed a novel procedure for analyzing clathrin lattice formation on rigid surfaces. We found that lattices can form on adaptor-coated convex-, planar- and even shallow concave surfaces, but the rate of formation and resistance to thermal dissociation of the lattice are greatly enhanced on convex surfaces. Atomic force microscopy on planar clathrin lattices demonstrates that the stiffness of the clathrin lattice is strictly dependent on light chains. The reduced stiffness of the lattice also compromised the ability of clathrin to generate coated buds on the surface of rigid liposomal membranes.


Subject(s)
Clathrin Light Chains/ultrastructure , Clathrin-Coated Vesicles/ultrastructure , Models, Biological , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/ultrastructure , Animals , Binding Sites , Clathrin Light Chains/metabolism , Clathrin-Coated Vesicles/metabolism , Liposomes/ultrastructure , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Polyvinyls/chemistry , Surface Properties
14.
Lab Chip ; 15(1): 290-300, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25370872

ABSTRACT

Ultrasonic standing waves are increasingly applied in the manipulation and sorting of micrometer-sized particles in microfluidic cells. To optimize the performance of such devices, it is essential to know the exact forces that the particles experience in the acoustic wave. Although much progress has been made via analytical and numerical modeling, the reliability of these methods relies strongly on the assumptions used, e.g. the boundary conditions. Here, we have combined an acoustic flow cell with an optical laser trap to directly measure the force on a single spherical particle in two dimensions. While performing ultrasonic frequency scans, we measured the time-averaged forces on single particles that were moved with the laser trap through the microfluidic cell. The cell including piezoelectric transducers was modeled with finite element methods. We found that the experimentally obtained forces and the derived pressure fields confirm the predictions from theory and modeling. This novel approach can now be readily expanded to other particle, chamber, and fluid regimes and opens up the possibility of studying the effects of the presence of boundaries, acoustic streaming, and non-linear fluids.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Optical Tweezers , Ultrasonics/instrumentation , Equipment Design , Microfluidic Analytical Techniques/methods
15.
Nano Lett ; 14(10): 5656-61, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25247753

ABSTRACT

Inorganic carbon nanomaterials, also called carbon nanodots, exhibit a strong photoluminescence with unusual properties and, thus, have been the focus of intense research. Nonetheless, the origin of their photoluminescence is still unclear and the subject of scientific debates. Here, we present a single particle comprehensive study of carbon nanodot photoluminescence, which combines emission and lifetime spectroscopy, defocused emission dipole imaging, azimuthally polarized excitation dipole scanning, nanocavity-based quantum yield measurements, high resolution transmission electron microscopy, and atomic force microscopy. We find that photoluminescent carbon nanodots behave as electric dipoles, both in absorption and emission, and that their emission originates from the recombination of photogenerated charges on defect centers involving a strong coupling between the electronic transition and collective vibrations of the lattice structure.

16.
Biophys J ; 106(7): 1447-56, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24703306

ABSTRACT

Upon endocytosis in its cellular host, influenza A virus transits via early to late endosomes. To efficiently release its genome, the composite viral shell must undergo significant structural rearrangement, but the exact sequence of events leading to viral uncoating remains largely speculative. In addition, no change in viral structure has ever been identified at the level of early endosomes, raising a question about their role. We performed AFM indentation on single viruses in conjunction with cellular assays under conditions that mimicked gradual acidification from early to late endosomes. We found that the release of the influenza genome requires sequential exposure to the pH of both early and late endosomes, with each step corresponding to changes in the virus mechanical response. Step 1 (pH 7.5-6) involves a modification of both hemagglutinin and the viral lumen and is reversible, whereas Step 2 (pH <6.0) involves M1 dissociation and major hemagglutinin conformational changes and is irreversible. Bypassing the early-endosomal pH step or blocking the envelope proton channel M2 precludes proper genome release and efficient infection, illustrating the importance of viral lumen acidification during the early endosomal residence for influenza virus infection.


Subject(s)
Endosomes/virology , Influenza A Virus, H3N2 Subtype/physiology , Virus Uncoating , Animals , Cryoelectron Microscopy , Dogs , Endosomes/chemistry , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hydrogen-Ion Concentration , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/ultrastructure , Liposomes/chemistry , Madin Darby Canine Kidney Cells , Mechanical Phenomena , Microscopy, Atomic Force , Protein Conformation , Ribonucleoproteins/chemistry , Viral Matrix Proteins/chemistry , Viral Proteins/chemistry , Virion/chemistry
17.
PLoS One ; 8(12): e83086, 2013.
Article in English | MEDLINE | ID: mdl-24349439

ABSTRACT

The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process.


Subject(s)
Antihypertensive Agents/pharmacology , Cell Membrane/metabolism , ErbB Receptors/metabolism , Propranolol/pharmacology , Antihypertensive Agents/chemistry , Cell Membrane/chemistry , ErbB Receptors/chemistry , HeLa Cells , Humans , Propranolol/chemistry , Protein Transport/drug effects
18.
Rev Sci Instrum ; 84(11): 113707, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24289404

ABSTRACT

Although atomic force microscopy is often the method of choice to probe the mechanical response of (sub)micrometer sized biomaterials, the lowest force that can be reliably controlled is limited to ≈0.1 nN. For soft biological samples, like cells, such forces can already lead to a strain large enough to enter the non-elastic deformation regime. To be able to investigate the response of single cells at lower forces we developed a vertical optical trap. The force can be controlled down to single piconewtons and most of the advantages of atomic force microscopy are maintained, such as the symmetrical application of forces at a wide range of loading rates. Typical consequences of moving the focus in the vertical direction, like the interferometric effect between the bead and the coverslip and a shift of focus, were quantified and found to have negligible effects on our measurements. With a fast responding force feedback loop we can achieve deformation rates as high as 50 µm/s, which allow the investigation of the elastic and viscous components of very soft samples. The potential of the vertical optical trap is demonstrated by measuring the linearity of the response of single cells at very low forces and a high bandwidth of deformation rates.


Subject(s)
Materials Testing/instrumentation , Mechanical Phenomena , Optical Tweezers , Cell Survival , Equipment Design , Feedback , Interferometry
19.
PLoS Biol ; 11(6): e1001577, 2013.
Article in English | MEDLINE | ID: mdl-23762018

ABSTRACT

Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system.


Subject(s)
Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Phase Transition , Amino Acid Sequence , Amyloid/metabolism , Animals , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Membranes/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Myelin Basic Protein/chemistry , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary
20.
PLoS One ; 7(9): e45297, 2012.
Article in English | MEDLINE | ID: mdl-23028915

ABSTRACT

The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30-600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.


Subject(s)
Actins/physiology , Fibroblasts/physiology , Animals , Cell Adhesion , Elastic Modulus , Fibroblasts/cytology , Mice , Microscopy, Atomic Force , Models, Biological , NIH 3T3 Cells , Optical Tweezers , Single-Cell Analysis , Stress, Mechanical , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...