Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Med Chem ; 67(12): 9896-9926, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38885438

ABSTRACT

The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in ß-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.


Subject(s)
Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Humans , Animals , Structure-Activity Relationship , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , HEK293 Cells , Receptors, Cannabinoid/metabolism , Dronabinol/pharmacology , Dronabinol/analogs & derivatives , Dronabinol/chemistry
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686188

ABSTRACT

The platelet aggregation inhibitory activity of selected xanthine-based adenosine A2A and A2B receptor antagonists was investigated, and attempts were made to explain the observed effects. The selective A2B receptor antagonist PSB-603 and the A2A receptor antagonist TB-42 inhibited platelet aggregation induced by collagen or ADP. In addition to adenosine receptor blockade, the compounds were found to act as moderately potent non-selective inhibitors of phosphodiesterases (PDEs). TB-42 showed the highest inhibitory activity against PDE3A along with moderate activity against PDE2A and PDE5A. The antiplatelet activity of PSB-603 and TB-42 may be due to inhibition of PDEs, which induces an increase in cAMP and/or cGMP concentrations in platelets. The xanthine-based adenosine receptor antagonists were found to be non-cytotoxic for platelets. Some of the compounds showed anti-oxidative properties reducing lipid peroxidation. These results may provide a basis for the future development of multi-target xanthine derivatives for the treatment of inflammation and atherosclerosis and the prevention of heart infarction and stroke.


Subject(s)
Atherosclerosis , Blood Platelets , Animals , Rats , Xanthine/pharmacology , Adenosine
3.
Bioorg Chem ; 101: 104033, 2020 08.
Article in English | MEDLINE | ID: mdl-32629282

ABSTRACT

A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.


Subject(s)
Adenosine A2 Receptor Antagonists/therapeutic use , Molecular Docking Simulation/methods , Humans , Ligands , Molecular Structure , Structure-Activity Relationship
4.
ChemMedChem ; 15(9): 772-786, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32162782

ABSTRACT

Annelated purinedione derivatives have been shown to act as possible multiple-target ligands, addressing adenosine receptors and monoaminooxidases. In this study, based on our previous results, novel annelated pyrimido- and diazepino[2,1-f]purinedione derivatives were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blocking monoamine oxidase B. A library of 19 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. This allowed 9-(2-chloro-6-fluorobenzyl)-3-ethyl-1-methyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (13 e; Ki human A2A AR: 264 nM and IC50 human MAO-B: 243 nM) to be identified as the most potent dual-acting ligand from this series. ADMET parameters were estimated in vitro, and analysis of the structure-activity relationships was complemented by molecular-docking studies based on previously published X-ray structures of the protein targets. Such dual-acting ligands, by selectively blocking A2A AR, accompanied by the inhibition of dopamine metabolizing enzyme MAO-B, might provide symptomatic and neuroprotective effects in, among others, the treatment of Parkinson disease.


Subject(s)
Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Receptor, Adenosine A2A/metabolism , Xanthines/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Structure-Activity Relationship , Xanthines/chemical synthesis , Xanthines/chemistry
5.
J Med Chem ; 62(8): 4032-4055, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30835463

ABSTRACT

The A2B adenosine receptor (A2BAR) was proposed as a novel target for the (immuno)therapy of cancer since A2BAR blockade results in antiproliferative, antiangiogenic, antimetastatic, and immunostimulatory effects. In this study, we explored the structure-activity relationships of xanthin-8-yl-benzenesulfonamides mainly by introducing a variety of linkers and substituents attached to the sulfonamide residue. A new, convergent strategy was established, which facilitated the synthesis of the target compounds. Many of the new compounds exhibited subnanomolar affinity for the A2BAR combined with high selectivity. Functional groups were introduced, which will allow the attachment of dyes and other reporter groups. 8-(4-((4-(4-Bromophenyl)piperazin-1-yl)sulfonyl)phenyl)-1-propylxanthine (34, PSB-1901) was the most potent A2B-antagonist ( Ki 0.0835 nM, KB 0.0598 nM, human A2BAR) with >10 000-fold selectivity versus all other AR subtypes. It was similarly potent and selective at the mouse A2BAR, making it a promising tool for preclinical studies. Computational studies predicted halogen bonding to contribute to the outstanding potency of 34.


Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Piperazines/chemistry , Receptor, Adenosine A2B/chemistry , Adenosine A2 Receptor Antagonists/metabolism , Animals , Binding Sites , CHO Cells , Cell Line , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Drug Design , Humans , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Piperazines/metabolism , Piperazines/pharmacology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Structure, Tertiary , Receptor, Adenosine A2B/metabolism , Structure-Activity Relationship , Xanthines/chemistry , Xanthines/metabolism
6.
Bioorg Med Chem ; 27(7): 1195-1210, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30808606

ABSTRACT

N9-Benzyl-substituted imidazo-, pyrimido- and 1,3-diazepino[2,1-f]purinediones were designed as dual-target-directed ligands combining A2A adenosine receptor (AR) antagonistic activity with blockade of monoamine oxidase B (MAO-B). A library of 37 novel compounds was synthesized and biologically evaluated in radioligand binding studies at AR subtypes and for their ability to inhibit MAO-B. A systematic modification of the tricyclic structures based on a xanthine core by enlargement of the third heterocyclic ring or attachment of various substituted benzyl moieties resulted in the development of 9-(2-chloro-6-fluorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[2,1-f]purine-2,4(1H,3H)-dione (9u; Ki human A2AAR: 189 nM and IC50 human MAO-B: 570 nM) as the most potent dual acting ligand of the series displaying high selectivity versus related targets. Moreover, some potent, selective MAO-B inhibitors were identified in the group of pyrimido- and 1,3-diazepino[2,1-f]purinediones. Compound 10d (10-(3,4-dichlorobenzyl)-1,3-dimethyl-7,8,9,10-tetrahydro-1H-[1,3]diazepino[2,1-f]purine-2,4(3H,6H)-dione) displayed an IC50 value at human MAO-B of 83 nM. Analysis of structure-activity relationships was complemented by molecular docking studies based on previously published X-ray structures of the protein targets. An extended biological profile was determined for selected compounds including in vitro evaluation of potential hepatotoxicity calculated in silico and antioxidant properties as an additional desirable activity. The new molecules acting as dual target drugs may provide symptomatic relief as well as disease-modifying effects for neurodegenerative diseases, in particular Parkinson's disease.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Receptor, Adenosine A2A/metabolism , Xanthine/pharmacology , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship , Xanthine/chemical synthesis , Xanthine/chemistry
7.
Medchemcomm ; 9(6): 951-962, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30108984

ABSTRACT

A library of 27 novel amide derivatives of annelated xanthines was designed and synthesized. The new compounds represent 1,3-dipropyl- and 1,3-dibutyl-pyrimido[2,1-f]purinedione-9-ethylphenoxy derivatives including a CH2CONH linker between the (CH2)2-amino group and the phenoxy moiety. A synthetic strategy to obtain the final products was developed involving solvent-free microwave irradiation. The new compounds were evaluated for their adenosine receptor (AR) affinities. The most potent derivatives contained a terminal tertiary amino function. Compounds with nanomolar AR affinities and at the same time high water-solubility were obtained (A1 (Ki = 24-605 nM), A2A (Ki = 242-1250 nM), A2B (Ki = 66-911 nM) and A3 (Ki = 155-1000 nM)). 2-(4-(2-(1,3-Dibutyl-2,4-dioxo-1,2,3,4,7,8-hexahydropyrimido[2,1-f]purin-9(6H)-yl)ethyl)phenoxy)-N-(3-(diethylamino)propyl)acetamide (27) and the corresponding N-(2-(pyrrolidin-1-yl)ethyl)acetamide (36) were found to be the most potent antagonists of the present series. While 27 showed CYP inhibition and moderate metabolic stability, 36 was found to possess suitable properties for in vivo applications. In an attempt to explain the affinity data for the synthesized compounds, molecular modeling and docking studies were performed using homology models of A1 and A2A adenosine receptors. The potent compound 36 was used as an example for discussion of the possible ligand-protein interactions. Moreover, the compounds showed high water-solubility indicating that the approach of introducing a basic side chain was successful for the class of generally poorly soluble AR antagonists.

8.
Bioorg Med Chem ; 24(18): 4347-4362, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27485602

ABSTRACT

A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure-activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species.


Subject(s)
Receptors, Purinergic P1/drug effects , Xanthines/metabolism , Amino Acid Sequence , Animals , Binding Sites , CHO Cells , Carbon-13 Magnetic Resonance Spectroscopy , Cricetulus , Humans , Proton Magnetic Resonance Spectroscopy , Rats , Receptors, Purinergic P1/metabolism , Sequence Homology, Amino Acid , Spectrophotometry, Infrared , Structure-Activity Relationship , Xanthines/chemistry , Xanthines/pharmacology
9.
Front Microbiol ; 7: 622, 2016.
Article in English | MEDLINE | ID: mdl-27199950

ABSTRACT

Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria.

10.
Arch Pharm (Weinheim) ; 348(10): 704-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26248713

ABSTRACT

A series of annelated derivatives of xanthine were synthesized and assayed as potential analgesic agents. All synthesized xanthine derivatives were tested in the writhing test and hot-plate test. The pharmacological assays demonstrated that all the compounds prepared, without exception, displayed a significant activity in the mouse writhing assay. The analgesic action of the most active compounds, expressed as ED50 was found to be 1.4-4.3 times more potent than that of acetylsalicylic acid used as the reference compound. However, only some of the compounds demonstrated analgesic activity in the hot-plate test. The analgesic effect of some compounds is probably related to their agonistic, antagonistic, or partial agonistic activity at the adenosine receptors.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Pain/prevention & control , Xanthines/chemical synthesis , Xanthines/pharmacology , Analgesics/metabolism , Analgesics/toxicity , Animals , Aspirin/pharmacology , Behavior, Animal/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , Drug Interactions , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Molecular Structure , Motor Activity/drug effects , Pain/physiopathology , Pain Threshold/drug effects , Rats , Reaction Time/drug effects , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism , Structure-Activity Relationship , Xanthines/metabolism , Xanthines/toxicity
11.
Eur J Med Chem ; 101: 313-25, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26160112

ABSTRACT

A series of amine derivatives of 5-aromatic imidazolidine-4-ones (7-19), representing three subgroups: piperazine derivatives of 5-arylideneimidazolones (7-13), piperazine derivatives of 5-arylideneimidazolidine-2,4-dione (14-16) and primary amines of 5-naphthyl-5-methylimidazolidine-2,4-diones (17-19), was evaluated for their ability to improve antibiotics effectiveness in two strains of Gram-positive Staphylococcus aureus: ATCC 25923 (a reference strain) and MRSA (methicillin resistant S. aureus) HEMSA 5 (a resistant clinical isolate). The latter compounds (17-19) were obtained by 4-step synthesis using Bucherer-Bergs condensation, two-phase bromoalkylation and Gabriel reactions. The naphthalen derivative: (Z)-5-(naphthalen-2-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)-one (10) was the most potent in combination with ß-lactam antibiotics and ciprofloxacin against the resistant strain. The high potency to increase efficacy of oxacillin was noted for (Z)-5-(anthracen-10-ylmethylene)-2-(piperazin-1-yl)-3H-imidazol-4(5H)one (12) too. In order to explain the mechanism of action of the compounds 10 and 12, docking studies with the use of crystal structures of a penicillin binding protein (PBP2a) and MecR1 were carried out. Their outcomes suggested that the most probable mechanism of action of the active compounds is the interaction with MecR1. Molecular dynamic experiments performed for the active compounds and compound 13 (structurally similar to 12) supported this hypothesis and provided possible explanation of activity dependencies of the tested compounds in terms of the restoration of antibiotic efficacy in S. aureus MRSA HEMSA 5.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Imidazolidines/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Models, Molecular , Anti-Bacterial Agents/chemical synthesis , Dose-Response Relationship, Drug , Imidazolidines/chemical synthesis , Imidazolidines/chemistry , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL