Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202411010, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895894

ABSTRACT

Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.

2.
Chemistry ; 27(68): 16924-16929, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-33547705

ABSTRACT

An effective strategy to enhance the performance of inorganic semiconductors is moving towards organic-inorganic hybrid materials. Here, we report the design of core-shell hybrid materials based on a TiO2 core functionalized with a polyampholytic (poly(dehydroalanine)-graft-(n-propyl phosphonic acid acrylamide) shell (PDha-g-PAA@TiO2 ). The PDha-g-PAA shell facilitates the efficient immobilization of the photosensitizer Eosin Y (EY) and enables electronic interactions between EY and the TiO2 core. This resulted in high visible-light-driven H2 generation. The enhanced light-driven catalytic activity is attributed to the unique core-shell design with the graft copolymer acting as bridge and facilitating electron and proton transfer, thereby also preventing the degradation of EY. Further catalytic enhancement of PDha-g-PAA@TiO2 was possible by introducing [Mo3 S13 ]2- cluster anions as hydrogen-evolution cocatalyst. This novel design approach is an example for a multi-component system in which reactivity can in future be independently tuned by selection of the desired molecular or polymeric species.

3.
Macromol Rapid Commun ; 40(10): e1800857, 2019 May.
Article in English | MEDLINE | ID: mdl-30653777

ABSTRACT

Polydehydroalanine (PDha) is a polyampholyte featuring both a -NH2 and a -COOH in every repeat unit and with that presents a rather high charge density. The synthesis and polymerization of two monomers, benzyl 2-tert-butoxycarbonylaminoacrylate and methyl 2-benzyloxycarbonylaminoacrylate is herein reported, which feature different protective groups and, after polymerization, the resulting PtBABA and PBOMA can be transformed into PDha using polymer-analogous modification reactions. More important, the current choice of protective groups allows either simultaneous deprotection in one step in both cases, but also the orthogonal deprotection of either -NH2 or -COOH moiety for PtBABA, given that appropriate conditions are chosen. The polymers are prepared using free radical polymerization and all (intermediate) polymeric materials are investigated using a combination of NMR spectroscopy and size exclusion chromatography.


Subject(s)
Alanine/analogs & derivatives , Polymerization , Polymers/chemical synthesis , Alanine/chemical synthesis , Alanine/chemistry , Buffers , Free Radicals/chemistry , Molecular Structure , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...