Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiographics ; 43(12): e230180, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37999984

ABSTRACT

The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.


Subject(s)
Artificial Intelligence , Neoplasms , United States , Humans , National Cancer Institute (U.S.) , Reproducibility of Results , Diagnostic Imaging , Multiomics , Neoplasms/diagnostic imaging
2.
Comput Methods Programs Biomed ; 242: 107839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832430

ABSTRACT

BACKGROUND AND OBJECTIVES: Reproducibility is a major challenge in developing machine learning (ML)-based solutions in computational pathology (CompPath). The NCI Imaging Data Commons (IDC) provides >120 cancer image collections according to the FAIR principles and is designed to be used with cloud ML services. Here, we explore its potential to facilitate reproducibility in CompPath research. METHODS: Using the IDC, we implemented two experiments in which a representative ML-based method for classifying lung tumor tissue was trained and/or evaluated on different datasets. To assess reproducibility, the experiments were run multiple times with separate but identically configured instances of common ML services. RESULTS: The results of different runs of the same experiment were reproducible to a large extent. However, we observed occasional, small variations in AUC values, indicating a practical limit to reproducibility. CONCLUSIONS: We conclude that the IDC facilitates approaching the reproducibility limit of CompPath research (i) by enabling researchers to reuse exactly the same datasets and (ii) by integrating with cloud ML services so that experiments can be run in identically configured computing environments.


Subject(s)
Lung Neoplasms , Software , Humans , Reproducibility of Results , Cloud Computing , Diagnostic Imaging , Lung Neoplasms/diagnostic imaging
3.
Cancer Res ; 81(16): 4188-4193, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34185678

ABSTRACT

The National Cancer Institute (NCI) Cancer Research Data Commons (CRDC) aims to establish a national cloud-based data science infrastructure. Imaging Data Commons (IDC) is a new component of CRDC supported by the Cancer Moonshot. The goal of IDC is to enable a broad spectrum of cancer researchers, with and without imaging expertise, to easily access and explore the value of deidentified imaging data and to support integrated analyses with nonimaging data. We achieve this goal by colocating versatile imaging collections with cloud-based computing resources and data exploration, visualization, and analysis tools. The IDC pilot was released in October 2020 and is being continuously populated with radiology and histopathology collections. IDC provides access to curated imaging collections, accompanied by documentation, a user forum, and a growing number of analysis use cases that aim to demonstrate the value of a data commons framework applied to cancer imaging research. SIGNIFICANCE: This study introduces NCI Imaging Data Commons, a new repository of the NCI Cancer Research Data Commons, which will support cancer imaging research on the cloud.


Subject(s)
Diagnostic Imaging/methods , National Cancer Institute (U.S.) , Neoplasms/diagnostic imaging , Neoplasms/genetics , Biomedical Research/trends , Cloud Computing , Computational Biology/methods , Computer Graphics , Computer Security , Data Interpretation, Statistical , Databases, Factual , Diagnostic Imaging/standards , Humans , Image Processing, Computer-Assisted , Pilot Projects , Programming Languages , Radiology/methods , Radiology/standards , Reproducibility of Results , Software , United States , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...