Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37722569

ABSTRACT

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Subject(s)
Antioxidants , Corpus Striatum , Oxidative Stress , Animals , Mice , Antioxidants/metabolism , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Corpus Striatum/physiology
2.
J Mol Med (Berl) ; 98(6): 849-862, 2020 06.
Article in English | MEDLINE | ID: mdl-32394396

ABSTRACT

Transmembrane BAX inhibitor motif containing 6 (TMBIM6), also known as Bax inhibitor-1, is an evolutionarily conserved protein involved in endoplasmic reticulum (ER) function. TMBIM6 is an ER Ca2+ leak channel and its deficiency enhances susceptibility to ER stress due to inhibition of the ER stress sensor IRE1α. It was previously shown that TMBIM6 overexpression improves glucose metabolism and that TMBIM6 knockout mice develop obesity. We here examined the metabolic alterations underlying the obese phenotype and subjected TMBIM6 knockout mice to indirect calorimetry and euglycemic-hyperinsulinemic tests with stable isotope dilution to gauge tissue-specific insulin sensitivity. This demonstrated no changes in heat production, food intake, activity or hepatic and peripheral insulin sensitivity. TMBIM6 knockout mice, however, featured a higher glucose-stimulated insulin secretion in vivo as assessed by the hyperglycemic clamp test and hepatic steatosis. This coincided with profound changes in glucose-mediated Ca2+ regulation in isolated pancreatic ß cells and increased levels of IRE1α levels but no differences in downstream effects of IRE1α like increased Xbp1 mRNA splicing or Ire1-dependent decay of insulin mRNA in the pancreas. We therefore conclude that lack of TMBIM6 does not affect insulin sensitivity but leads to hyperinsulinemia, which serves to explain the weight gain. TMBIM6-mediated metabolic alterations are mainly caused by its role as a Ca2+ release channel in the ER. KEY MESSAGES: TMBIM6-/- leads to obesity and hepatic steatosis. Food intake and energy expenditure are not changed in TMBIM6-/- mice. No changes in insulin resistance in TMBIM6-/- mice. Increased insulin secretion caused by altered calcium dynamics in ß cells.


Subject(s)
Calcium/metabolism , Disease Susceptibility , Insulin Secretion , Membrane Proteins/deficiency , Obesity/etiology , Obesity/metabolism , Animals , Disease Models, Animal , Eating , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Gene Expression Regulation , Genotype , Glucose/metabolism , Liver/metabolism , Liver/pathology , Liver/ultrastructure , Mice , Mice, Knockout , RNA Splicing , Thermogenesis/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
3.
Oxid Med Cell Longev ; 2017: 6093903, 2017.
Article in English | MEDLINE | ID: mdl-28116039

ABSTRACT

Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.


Subject(s)
Dimethyl Fumarate/pharmacology , Glutathione Reductase/biosynthesis , Glutathione/metabolism , Immunosuppressive Agents/pharmacology , Neurons/drug effects , Neurons/metabolism , Animals , Cell Line , Immunoblotting , Mice , Real-Time Polymerase Chain Reaction , Transfection , Up-Regulation
4.
Biochim Biophys Acta ; 1859(7): 833-40, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27080130

ABSTRACT

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system.


Subject(s)
Neural Stem Cells/physiology , Neurogenesis/genetics , Receptors, Progesterone/physiology , Animals , Apoptosis Regulatory Proteins , Cells, Cultured , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neurons/physiology , Pregnancy , RNA, Small Interfering/pharmacology , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/genetics , Trans-Activators
5.
Biochim Biophys Acta ; 1853(9): 2104-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25764978

ABSTRACT

Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca²âº leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca²âº homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca²âº content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca²âº concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca²âº homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , Golgi Apparatus/metabolism , Homeostasis/physiology , Membrane Proteins/biosynthesis , Amino Acid Motifs , Cell Line , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , Humans , Membrane Proteins/genetics , Organ Specificity/physiology
6.
Biochem J ; 462(1): 125-32, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24869658

ABSTRACT

GPR39 is a G-protein-coupled zinc receptor that protects against diverse effectors of cell death. Its protective activity is mediated via constitutive activation of Gα13 and the RhoA pathway, leading to increased SRE (serum-response element)-dependent transcription; the zinc-dependent immediate activation of GPR39 involves Gq-mediated increases in cytosolic Ca2+ and Gs coupling leading to increased cAMP levels. We used the cytosolic and soluble C-terminus of GPR39 in a Y2H (yeast-2-hybrid) screen for interacting proteins, thus identifying PKIB (protein kinase A inhibitor ß). Co-expression of GPR39 with PKIB increased the protective activity of GPR39 via the constitutive, but not the ligand-mediated, pathway. PKIB inhibits protein kinase A by direct interaction with its pseudosubstrate domain; mutation of this domain abolished the inhibitory activity of PKIB on protein kinase A activity, but had no effect on the interaction with GPR39, cell protection and induction of SRE-dependent transcription. Zinc caused dissociation of PKIB from GPR39, thereby liberating it to associate with protein kinase A and inhibit its activity, which would result in a negative-feedback loop with the ability to limit activation of the Gs pathway by zinc.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Protein Kinase Inhibitors/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , CHO Cells , Cell Line , Cell Membrane/metabolism , Cricetulus , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Mice , Two-Hybrid System Techniques , Zinc/metabolism , Zinc/pharmacology
7.
Br J Pharmacol ; 171(8): 2147-58, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24319993

ABSTRACT

BACKGROUND AND PURPOSE: The hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Extracellular glutamate depletes cellular glutathione by blocking the glutamate/cystine antiporter system xc-. Glutathione depletion induces a well-defined programme of cell death characterized by an increase in reactive oxygen species and mitochondrial dysfunction. EXPERIMENTAL APPROACH: We compared the mitochondrial shape, the abundance of mitochondrial complexes and the mitochondrial respiration of HT22 cells, selected based on their resistance to glutamate, with those of the glutamate-sensitive parental cell line. KEY RESULTS: Glutamate-resistant mitochondria were less fragmented and displayed seemingly contradictory features: mitochondrial calcium and superoxide were increased while high-resolution respirometry suggested a reduction in mitochondrial respiration. This was interpreted as a reverse activity of the ATP synthase under oxidative stress, leading to hydrolysis of ATP to maintain or even elevate the mitochondrial membrane potential, suggesting these cells endure ineffective energy metabolism to protect their membrane potential. Glutamate-resistant cells were also resistant to oligomycin, an inhibitor of the ATP synthase, but sensitive to deoxyglucose, an inhibitor of hexokinases. Exchanging glucose with galactose rendered resistant cells 1000-fold more sensitive to oligomycin. These results, together with a strong increase in cytosolic hexokinase 1 and 2, a reduced lactate production and an increased activity of glucose-6-phosphate dehydrogenase, suggest that glutamate-resistant HT22 cells shuttle most available glucose towards the hexose monophosphate shunt to increase glutathione recovery. CONCLUSIONS AND IMPLICATIONS: These results indicate that mitochondrial and metabolic adaptations play an important role in the resistance of cells to oxidative stress.


Subject(s)
Energy Metabolism/physiology , Hippocampus/physiopathology , Mitochondria/physiology , Neurons/physiology , Oxidative Stress/physiology , Animals , Calcium/metabolism , Cell Count , Cell Death/drug effects , Cell Death/physiology , Cell Respiration/drug effects , Cell Respiration/physiology , Deoxyglucose/pharmacology , Drug Resistance/physiology , Energy Metabolism/drug effects , Glucosephosphate Dehydrogenase/metabolism , Glutamic Acid/pharmacology , Glutathione/metabolism , Hexokinase/metabolism , Hippocampus/drug effects , Lactic Acid/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Multiprotein Complexes/metabolism , Neurons/drug effects , Neurons/enzymology , Neurons/metabolism , Oligomycins/pharmacology , Oxygen Consumption/drug effects , Superoxides/metabolism , TOR Serine-Threonine Kinases/metabolism
8.
Front Mol Neurosci ; 6: 42, 2013.
Article in English | MEDLINE | ID: mdl-24324398

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disease caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein and characterized by dysregulated calcium homeostasis. We investigated whether these disturbances are correlated with changes in the mRNA level of the genes that encode proteins involved in calcium homeostasis and signaling (i.e., the calciosome). Using custom-made TaqMan low-density arrays containing probes for 96 genes, we quantified mRNA in the striatum in YAC128 mice, a model of HD, and wildtype mice. HTT mutation caused the increased expression of some components of the calcium signalosome, including calretinin, presenilin 2, and calmyrin 1, and the increased expression of genes indirectly involved in calcium homeostasis, such as huntingtin-associated protein 1 and calcyclin-binding protein. To verify these findings in a different model, we used PC12 cells with an inducible expression of mutated full-length HTT. Using single-cell imaging with Fura-2AM, we found that store-operated Ca(2+) entry but not endoplasmic reticulum (ER) store content was changed as a result of the expression of mutant HTT. Statistically significant downregulation of the Orai calcium channel subunit 2, calmodulin, and septin 4 was detected in cells that expressed mutated HTT. Our data indicate that the dysregulation of calcium homeostasis correlates with changes in the gene expression of members of the calciosome. These changes, however, differed in the two models of HD used in this study. Our results indicate that each HD model exhibits distinct features that may only partially resemble the human disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...