Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Forensic Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997947

ABSTRACT

The collection, storage, and transport of samples prior to and during analysis is of utmost importance, especially for highly potent analogs that may not be present in high concentrations and are susceptible to pH or thermally mediated degradation. An accelerated stability study was performed on 17 fentanyl analogs (fentalogs) over a wide range of pH (2-10) and temperature (20-60°C) conditions over 24 h. Dilute aqueous systems were used to investigate temperature and pH-dependent kinetics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Liquid chromatography-quadrupole/time-of-flight-mass spectrometry (LC-Q/TOF-MS) was used for structural elucidation of degradants. With the exception of remifentanil, all fentalogs evaluated were stable at pH 6 or lower. Fentalogs were generally unstable in strongly alkaline environments and at elevated temperatures. Remifentanil was the least stable drug and N-dealkylated fentalogs were the most stable. Fentanyl degraded to acetylfentanyl, norfentanyl, fentanyl N-oxide, and 1-phenethylpyridinium salt (1-PEP). A total of 26 unique breakdown products were observed for 15 of the fentanyl derivatives studied. Common degradation pathways involved N-dealkylation, oxidation of the piperidine nitrogen, and ß-elimination of N-phenylpropanamide followed by oxidation/dehydration of the piperidine ring. Ester and amide hydrolysis, demethylation at the propanamide, and O-demethylation were observed for selected fentalogs only. The potential for analyte loss should be considered during the pre-analytical phase (i.e., shipping and transport) where environmental conditions may not be controlled, as well as during the analysis itself.

2.
J Forensic Sci ; 68(5): 1542-1554, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37431580

ABSTRACT

Although fentanyl and a small number of derivatives used for medical or veterinary procedures are well characterized, physiochemical properties have not been determined for many of the newer fentanyl analogs. Partition coefficients (Log P) were determined for 19 fentalogs using the shake-flask method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Experimentally determined partition coefficients were compared with computationally derived data using six independent software sources (ACD/LogP, LogKOWWIN v 1.69, miLogP 2.2, OsirisP, XLOGP 3.0, ALogPS 2.1). Fentalogs with a wide variety of structural modifications were intentionally selected, yielding Log P values ranging from 1.21 to 4.90. Comparison of experimental and computationally derived Log P values were highly correlated (R2 0.854-0.967). Overall, substructure-based modeling using fragmental methods or property-based topological approaches aligned more closely with experimentally determined Log P values. LC-MS/MS was also used to estimate pKa values for fentalogs with no previously reported data. Lipophilicity and pKa are important considerations for analytical detection and toxicological interpretation. In silico methods allow the determination of physicochemical information prior to certified reference materials being readily available for in vitro or in vivo studies. Computationally derived data can provide insight regarding physiochemical characteristics of future fentalogs and other classes of synthetic analogs that have yet to emerge.


Subject(s)
Fentanyl , Tandem Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...