Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3447, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658554

ABSTRACT

Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.


Subject(s)
Biocatalysis , Protein Engineering , Protein Engineering/methods , Enzymes/metabolism , Enzymes/genetics , Enzymes/chemistry , Machine Learning , Directed Molecular Evolution/methods , Automation , Gene Library
2.
mBio ; 15(1): e0199123, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099716

ABSTRACT

The inaugural Junior Editorial Board (JEB) of mBio consisted of 64 early-career researchers active from 2022 to 2023. The goal of the JEB was to train early-career researchers in the art of peer review under the guidance of experienced editors. JEB members gained hands-on experience in peer review by participating in modules detailing the publishing process through the lenses of the journal, editor, and reviewer. Ultimately, JEB members applied this new knowledge by reviewing mBio manuscripts. Here, we summarize the background, the mission, and the achievements of the first mBio JEB. We also include possible trajectories for the future editions of this important program.


Subject(s)
Peer Review , Publishing , Humans , Research Personnel , Peer Review, Research
3.
Chembiochem ; 24(13): e202200786, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36920955

ABSTRACT

Oceans cover 71 % of Earth's surface and are home to hundreds of thousands of species, many of which are microbial. Knowledge about marine microbes has strongly increased in the past decades due to global sampling expeditions, and hundreds of detailed studies on marine microbial ecology, physiology, and biogeochemistry. However, the translation of this knowledge into biotechnological applications or synthetic biology approaches using marine microbes has been limited so far. This review highlights key examples of marine bacteria in synthetic biology and metabolic engineering, and outlines possible future work based on the emerging marine chassis organisms Vibrio natriegens and Halomonas bluephagenesis. Furthermore, the valorization of algal polysaccharides by genetically enhanced microbes is presented as an example of the opportunities and challenges associated with blue biotechnology. Finally, new roles for marine synthetic biology in tackling pressing global challenges, including climate change and marine pollution, are discussed.


Subject(s)
Bacteria , Synthetic Biology , Oceans and Seas , Bacteria/metabolism , Biotechnology , Aquatic Organisms/metabolism
4.
Metab Eng ; 76: 97-109, 2023 03.
Article in English | MEDLINE | ID: mdl-36731627

ABSTRACT

Ethylene glycol (EG) is a promising next generation feedstock for bioprocesses. It is a key component of the ubiquitous plastic polyethylene terephthalate (PET) and other polyester fibers and plastics, used in antifreeze formulations, and can also be generated by electrochemical conversion of syngas, which makes EG a key compound in a circular bioeconomy. The majority of biotechnologically relevant bacteria assimilate EG via the glycerate pathway, a wasteful metabolic route that releases CO2 and requires reducing equivalents as well as ATP. In contrast, the recently characterized ß-hydroxyaspartate cycle (BHAC) provides a more efficient, carbon-conserving route for C2 assimilation. Here we aimed at overcoming the natural limitations of EG metabolism in the industrially relevant strain Pseudomonas putida KT2440 by replacing the native glycerate pathway with the BHAC. We first prototyped the core reaction sequence of the BHAC in Escherichia coli before establishing the complete four-enzyme BHAC in Pseudomonas putida. Directed evolution on EG resulted in an improved strain that exhibits 35% faster growth and 20% increased biomass yield compared to a recently reported P. putida strain that was evolved to grow on EG via the glycerate pathway. Genome sequencing and proteomics highlight plastic adaptations of the genetic and metabolic networks in response to the introduction of the BHAC into P. putida and identify key mutations for its further integration during evolution. Taken together, our study shows that the BHAC can be utilized as 'plug-and-play' module for the metabolic engineering of two important microbial platform organisms, paving the way for multiple applications for a more efficient and carbon-conserving upcycling of EG in the future.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Plastics/metabolism , Ethylene Glycol/metabolism , Polyethylene Terephthalates/metabolism , Carbon/metabolism
5.
Elife ; 112022 07 25.
Article in English | MEDLINE | ID: mdl-35876664

ABSTRACT

Ammonium (NH4+) is essential to generate the nitrogenous building blocks of life. It gets assimilated via the canonical biosynthetic routes to glutamate and is further distributed throughout metabolism via a network of transaminases. To study the flexibility of this network, we constructed an Escherichia coli glutamate auxotrophic strain. This strain allowed us to systematically study which amino acids serve as amine sources. We found that several amino acids complemented the auxotrophy either by producing glutamate via transamination reactions or by their conversion to glutamate. In this network, we identified aspartate transaminase AspC as a major connector between many amino acids and glutamate. Additionally, we extended the transaminase network by the amino acids ß-alanine, alanine, glycine, and serine as new amine sources and identified d-amino acid dehydrogenase (DadA) as an intracellular amino acid sink removing substrates from transaminase reactions. Finally, ammonium assimilation routes producing aspartate or leucine were introduced. Our study reveals the high flexibility of the cellular amination network, both in terms of transaminase promiscuity and adaptability to new connections and ammonium entry points.


Nitrogen is an essential part of many of the cell's building blocks, including amino acids and nucleotides, which form proteins and DNA respectively. Therefore, nitrogen has to be available to cells so that they can survive and grow. In nature, some microorganisms convert the gaseous form of nitrogen into ammonium, which then acts as the nitrogen source of most organisms, including bacteria, plants and animals. Once cells take up ammonium, it is 'fixed' by becoming part of an amino acid called glutamate, which has a so-called 'amine group' that contains a nitrogen. Glutamate then becomes the central source for passing these amines on to other molecules, distributing nitrogen throughout the cell. This coupling between ammonium fixation and glutamate production evolved over millions of years and occurs in all organisms. However, the complete metabolic network that underlies the distribution of amines remains poorly understood despite decades of research. Furthermore, it is not clear whether ammonium can be fixed in a way that is independent of glutamate. To answer these questions, Schulz-Mirbach et al. used genetic engineering to create a strain of the bacterium E. coli that was unable to make glutamate. These mutant cells could only grow in the presence of certain amino acids, which acted as alternative amine sources. Schulz-Mirbach et al. found that enzymes called transaminases, and one called AspC in particular, were required for the cells to be able to produce glutamate using the amine groups from other amino acids. Notably, Schulz-Mirbach et al. showed that AspC, which had previously been shown to use an amino acid called aspartate as a source of amine groups, is indispensable if the cell is to use the amine groups from other amino acids ­ including histidine, tyrosine, phenylalanine, tryptophan, methionine, isoleucine and leucine. Schulz-Mirbach et al. also discovered that if they engineered the E. coli cells to produce transaminases from other species, the repertoire of molecules that the cells could use as the source of amines to generate glutamate increased. In a final set of experiments, Schulz-Mirbach et al. were able to engineer the cells to fix ammonium by producing aspartate and leucine, thus entirely bypassing the deleted routes of glutamate synthesis. These data suggest that fixing ammonium and distributing nitrogen in E. coli can be very flexible. The results from these experiments may shed light on how cells adapt when there is not a lot of ammonium available. Moreover, this study could advance efforts at metabolic engineering, for example, to create molecules through new pathways or to boost the production of amino acids needed for industrial purposes.


Subject(s)
Ammonium Compounds , Escherichia coli , Amination , Amines/metabolism , Amino Acids/metabolism , Ammonium Compounds/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Glutamic Acid/metabolism , Transaminases/genetics , Transaminases/metabolism
6.
Biol Chem ; 401(12): 1429-1441, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32990641

ABSTRACT

For a long time, our understanding of metabolism has been dominated by the idea of biochemical unity, i.e., that the central reaction sequences in metabolism are universally conserved between all forms of life. However, biochemical research in the last decades has revealed a surprising diversity in the central carbon metabolism of different microorganisms. Here, we will embrace this biochemical diversity and explain how genetic redundancy and functional degeneracy cause the diversity observed in central metabolic pathways, such as glycolysis, autotrophic CO2 fixation, and acetyl-CoA assimilation. We conclude that this diversity is not the exception, but rather the standard in microbiology.


Subject(s)
Carbon/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics
7.
Nature ; 575(7783): 500-504, 2019 11.
Article in English | MEDLINE | ID: mdl-31723261

ABSTRACT

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Subject(s)
Aquatic Organisms/metabolism , Aspartic Acid/analogs & derivatives , Glycolates/metabolism , Metabolic Networks and Pathways , Proteobacteria/metabolism , Alcohol Oxidoreductases/metabolism , Aldehyde-Lyases/metabolism , Aquatic Organisms/enzymology , Aspartic Acid/metabolism , Biocatalysis , Glyoxylates/metabolism , Hydro-Lyases/metabolism , Kinetics , Oxidoreductases/metabolism , Phytoplankton/enzymology , Phytoplankton/metabolism , Proteobacteria/enzymology , Transaminases/metabolism
8.
mBio ; 10(4)2019 07 09.
Article in English | MEDLINE | ID: mdl-31289174

ABSTRACT

During growth, microorganisms have to balance metabolic flux between energy and biosynthesis. One of the key intermediates in central carbon metabolism is acetyl coenzyme A (acetyl-CoA), which can be either oxidized in the citric acid cycle or assimilated into biomass through dedicated pathways. Two acetyl-CoA assimilation strategies in bacteria have been described so far, the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). Here, we show that Paracoccus denitrificans uses both strategies for acetyl-CoA assimilation during different growth stages, revealing an unexpected metabolic complexity in the organism's central carbon metabolism. The EMCP is constitutively expressed on various substrates and leads to high biomass yields on substrates requiring acetyl-CoA assimilation, such as acetate, while the GC is specifically induced on these substrates, enabling high growth rates. Even though each acetyl-CoA assimilation strategy alone confers a distinct growth advantage, P. denitrificans recruits both to adapt to changing environmental conditions, such as a switch from succinate to acetate. Time-resolved single-cell experiments show that during this switch, expression of the EMCP and GC is highly coordinated, indicating fine-tuned genetic programming. The dynamic metabolic rewiring of acetyl-CoA assimilation is an evolutionary innovation by P. denitrificans that allows this organism to respond in a highly flexible manner to changes in the nature and availability of the carbon source to meet the physiological needs of the cell, representing a new phenomenon in central carbon metabolism.IMPORTANCE Central carbon metabolism provides organisms with energy and cellular building blocks during growth and is considered the invariable "operating system" of the cell. Here, we describe a new phenomenon in bacterial central carbon metabolism. In contrast to many other bacteria that employ only one pathway for the conversion of the central metabolite acetyl-CoA, Paracoccus denitrificans possesses two different acetyl-CoA assimilation pathways. These two pathways are dynamically recruited during different stages of growth, which allows P. denitrificans to achieve both high biomass yield and high growth rates under changing environmental conditions. Overall, this dynamic rewiring of central carbon metabolism in P. denitrificans represents a new strategy compared to those of other organisms employing only one acetyl-CoA assimilation pathway.


Subject(s)
Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Carbon/metabolism , Glyoxylates/metabolism , Metabolic Networks and Pathways , Paracoccus denitrificans/metabolism , Acetates/metabolism , Bacterial Proteins/genetics , Paracoccus denitrificans/genetics , Single-Cell Analysis
9.
mBio ; 10(3)2019 06 25.
Article in English | MEDLINE | ID: mdl-31239380

ABSTRACT

Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated "Candidatus Kentron," the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy.IMPORTANCE Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, "Candidatus Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.


Subject(s)
Autotrophic Processes , Bacteria/genetics , Carbon Cycle/genetics , Ciliophora/microbiology , Sulfur/metabolism , Symbiosis , Aquatic Organisms/microbiology , Bacteria/metabolism , Carbon Dioxide/metabolism , Gene Expression Profiling , Genomics , Italy , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics
10.
Metab Eng ; 47: 423-433, 2018 05.
Article in English | MEDLINE | ID: mdl-29625224

ABSTRACT

Organisms are either heterotrophic or autotrophic, meaning that they cover their carbon requirements by assimilating organic compounds or by fixing inorganic carbon dioxide (CO2). The conversion of a heterotrophic organism into an autotrophic one by metabolic engineering is a long-standing goal in synthetic biology and biotechnology, because it ultimately allows for the production of value-added compounds from CO2. The heterotrophic Alphaproteobacterium Methylobacterium extorquens AM1 is a platform organism for a future C1-based bioeconomy. Here we show that M. extorquens AM1 provides unique advantages for establishing synthetic autotrophy, because energy metabolism and biomass formation can be effectively separated from each other in the organism. We designed and realized an engineered strain of M. extorquens AM1 that can use the C1 compound methanol for energy acquisition and forms biomass from CO2 by implementation of a heterologous Calvin-Benson-Bassham (CBB) cycle. We demonstrate that the heterologous CBB cycle is active, confers a distinct phenotype, and strongly increases viability of the engineered strain. Metabolic 13C-tracer analysis demonstrates the functional operation of the heterologous CBB cycle in M. extorquens AM1 and comparative proteomics of the engineered strain show that the host cell reacts to the implementation of the CBB cycle in a plastic way. While the heterologous CBB cycle is not able to support full autotrophic growth of M. extorquens AM1, our study represents a further advancement in the design and realization of synthetic autotrophic organisms.


Subject(s)
Carbon Dioxide/metabolism , Metabolic Engineering , Methylobacterium extorquens , Photosynthesis , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism
11.
ACS Synth Biol ; 7(1): 86-97, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29216425

ABSTRACT

The ethylmalonyl-CoA pathway (EMCP) is an anaplerotic reaction sequence in the central carbon metabolism of numerous Proteo- and Actinobacteria. The pathway features several CoA-bound mono- and dicarboxylic acids that are of interest as platform chemicals for the chemical industry. The EMCP, however, is essential for growth on C1 and C2 carbon substrates and therefore cannot be simply interrupted to drain these intermediates. In this study, we aimed at reengineering central carbon metabolism of the Alphaproteobacterium Methylobacterium extorquens AM1 for the specific production of EMCP derivatives in the supernatant. Establishing a heterologous glyoxylate shunt in M. extorquens AM1 restored wild type-like growth in several EMCP knockout strains on defined minimal medium with acetate as carbon source. We further engineered one of these strains that carried a deletion of the gene encoding crotonyl-CoA carboxylase/reductase to demonstrate in a proof-of-concept the specific production of crotonic acid in the supernatant on a defined minimal medium. Our experiments demonstrate that it is in principle possible to further exploit the EMCP by establishing an alternative central carbon metabolic pathway in M. extorquens AM1, opening many possibilities for the biotechnological production of EMCP-derived compounds in future.


Subject(s)
Acyl Coenzyme A/genetics , Bacterial Proteins/genetics , Carbon/metabolism , Glyoxylates/metabolism , Metabolic Engineering , Methylobacterium extorquens/metabolism , Acetic Acid/metabolism , Acyl Coenzyme A/deficiency , Acyl-CoA Dehydrogenases/deficiency , Acyl-CoA Dehydrogenases/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/metabolism , Crotonates/metabolism , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Isocitrate Lyase/genetics , Isocitrate Lyase/metabolism , Malate Synthase/genetics , Malate Synthase/metabolism , Methanol/chemistry , Methanol/metabolism , Methylobacterium extorquens/genetics , Methylobacterium extorquens/growth & development , Oxidation-Reduction , Spectrophotometry
12.
Science ; 354(6314): 900-904, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27856910

ABSTRACT

Carbon dioxide (CO2) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO2 fixation pathways, thereby opening the way for in vitro and in vivo applications.


Subject(s)
Carbon Cycle , Carbon Dioxide/chemistry , Acyl Coenzyme A/chemistry , Acyl Coenzyme A/genetics , Arabidopsis/enzymology , Biosynthetic Pathways , Carbon/chemistry , Oxidoreductases/chemistry , Oxidoreductases/genetics , Protein Engineering , Rhodobacter sphaeroides/enzymology , Synthetic Biology
13.
Angew Chem Int Ed Engl ; 54(45): 13457-61, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26383129

ABSTRACT

Carboxylating enoyl-thioester reductases (ECRs) are a recently discovered class of enzymes. They catalyze the highly efficient addition of CO2 to the double bond of α,ß-unsaturated CoA-thioesters and serve two biological functions. In primary metabolism of many bacteria they produce ethylmalonyl-CoA during assimilation of the central metabolite acetyl-CoA. In secondary metabolism they provide distinct α-carboxyl-acyl-thioesters to vary the backbone of numerous polyketide natural products. Different ECRs were systematically assessed with a diverse library of potential substrates. We identified three active site residues that distinguish ECRs restricted to C4 and C5-enoyl-CoAs from highly promiscuous ECRs and successfully engineered a selected ECR as proof-of-principle. This study defines the molecular basis of ECR reactivity, allowing for predicting and manipulating a key reaction in natural product diversification.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Polyketides/metabolism , Protein Engineering , Models, Molecular , Molecular Structure , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Polyketides/chemistry
14.
ACS Synth Biol ; 4(4): 430-43, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25105793

ABSTRACT

The discipline of synthetic biology requires standardized tools and genetic elements to construct novel functionalities in microorganisms; yet, many model systems still lack such tools. Here, we describe a novel set of vectors that allows the convenient construction of synthetic operons in Methylobacterium extorquens AM1, an important alphaproteobacterial model organism for methylotrophy and a promising platform organism for methanol-based biotechnology. In addition, we provide a set of constitutive alphaproteobacterial promoters of different strengths that were characterized in detail by two approaches: on the single-cell scale and on the cell population level. Finally, we describe a straightforward strategy to deliver synthetic constructs to the genome of M. extorquens AM1 and other Alphaproteobacteria. This study defines a new standard to systematically characterize genetic parts for their use in M. extorquens AM1 by using single-cell fluorescence microscopy and opens the toolbox for synthetic biological applications in M. extorquens AM1 and other alphaproteobacterial model systems.


Subject(s)
Genetic Vectors/genetics , Methylobacterium/genetics , Operon , Transformation, Bacterial , Methylobacterium/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 111(22): 8239-44, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843170

ABSTRACT

Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments.


Subject(s)
Aerobiosis/physiology , Ammonia/metabolism , Archaea/enzymology , Autotrophic Processes/physiology , Carbon Cycle/physiology , Carbon Dioxide/metabolism , Acetyl Coenzyme A/metabolism , Archaea/genetics , Archaea/metabolism , Energy Metabolism/genetics , Energy Metabolism/physiology , Evolution, Molecular , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Oxidation-Reduction , Photosynthesis/genetics , Photosynthesis/physiology , Phylogeny
16.
J Biotechnol ; 168(3): 243-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23702164

ABSTRACT

Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology.


Subject(s)
Atmosphere/chemistry , Biotechnology , Carbon Dioxide/metabolism , Carboxy-Lyases/metabolism , Biotechnology/trends , Carbon Dioxide/chemistry , Catalytic Domain , Chemical Industry , Evolution, Molecular , Models, Chemical , Multigene Family , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...