Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 150: 106333, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134586

ABSTRACT

The fibro-cartilaginous labrum surrounds the acetabular rim and is important for hip joint stability and sealing. Sealing may be enhanced by swelling pressure within the normal labrum. Swelling of the degenerated or torn labrum might occur and potentially contribute to the development of osteoarthritis, through altered load transmission. This study aimed to characterize the three-dimensional swelling behaviour, the collagen fiber orientation and spatial proteoglycan distribution of the bovine acetabular labrum. Specimens were harvested from bovine donors (192-652 days, male, n = 6 donors). Structure was analyzed by scanning electron microscopy, histology, and dimethylmethylene blue assay. Specimen dimensions were measured before and after incubation in phosphate buffered saline to assess the swelling. Results showed that the articulating surface is composed of a collagen mesh network. Collagen fiber bundles showed a low degree of alignment close to the surface and were circumferentially aligned in the deep tissue. Proteoglycans were identified clustered between the collagen bundles. Glycosaminoglycan content was 10 x lower than that of cartilage (23.1 ± 6.4 compared to 299.5 ± 19.1 µg/mg dry weight) with minor regional differences. Specimens swelled significantly more in the orthogonal direction (swelling ratio 124.7 ± 10.2%) compared to the swelling parallel to the articulating surface (108.8 ± 6.1% and 102.8 ± 4.1%). In the deep tissue, swelling was also restricted in the main collagen fiber bundle direction (circumferentially), with a swelling ratio of 109.5 ± 4.0% in the main fiber bundle direction compared to 126.8 ± 7.3 % and 122.3 ± 5.8% radially. The findings demonstrate that the labrum shows anisotropic swelling properties, which reflect the anisotropy in the tissue structure and inter-fiber localisation of proteoglycans.


Subject(s)
Acetabulum , Cartilage, Articular , Male , Animals , Cattle , Anisotropy , Cartilage, Articular/pathology , Hip Joint , Collagen , Proteoglycans
2.
Bone ; 146: 115903, 2021 05.
Article in English | MEDLINE | ID: mdl-33652170

ABSTRACT

Multi-scale, subject-specific quantitative methods to characterize and monitor osteoarthritis in animal models and therapeutic treatments could help reveal causal relationships in disease development and distinguish treatment strategies. In this work, we demonstrate a reproducible and sensitive quantitative image analysis to characterize bone, cartilage and joint measures describing a rat model of post-traumatic osteoarthritis. Eleven 3-month-old male Wistar rats underwent medial anterior cruciate ligament (ACL) transection and medial meniscectomy on the right knee to destabilise the right tibiofemoral joint. They were sacrificed 6 weeks post-surgery and a silicon-based micro-bead contrast agent was injected in the joint space, before scanning with micro-computed tomography (microCT). Subsequently, 3D quantitative morphometric analysis (QMA), previously developed for rabbit joints, was performed. This included cartilage, subchondral cortical and epiphyseal bone measures, as well as novel tibiofemoral joint metrics. Semi-quantitative evaluation was performed on matching two-dimensional (2D) histology and microCT images. Reproducibility of the QMA was tested on eleven age-matched additional joints. The results indicate the QMA method is accurate and reproducible and that microCT-derived cartilage measurements are valid for the analysis of rat joints. The pathologic changes caused by transection of the ACL and medial meniscectomy were reflected in measurements of bone shape, cartilage morphology, and joint alignment. Furthermore, we were able to identify model-specific predictive parameters based on morphometric parameters measured with the QMA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Cartilage, Articular/diagnostic imaging , Disease Models, Animal , Male , Osteoarthritis/diagnostic imaging , Rabbits , Rats , Rats, Wistar , Reproducibility of Results , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...