Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297285

ABSTRACT

Inflammation mediators enhance the activity of connexin (Cx) hemichannels, especially in the epithelial and endothelial tissues. As potential release routes for injury signals, such as (oligo)nucleotides, Cx hemichannels may contribute to long-lasting inflammation. Specific inhibition of Cx hemichannels may therefore be a mode of prevention and treatment of long-lasting, chronic sterile inflammation. The activity of Cx hemichannels was analysed in N2A and HeLa cells transfected with human Cx26 and Cx46 as well as in Calu-3 cells, using dye uptake as functional assay. Moreover, the possible impacts of the bioactive phenolic agents CVB2-61 and CVB4-57 on the barrier function of epithelial cells was analysed using Calu-3 cells. Both agents inhibited the dye uptake in N2A cells expressing Cx26 (>5 µM) and Cx46 (>20 µM). In Calu-3 cells, CVB2-61 and CVB4-57 reversibly inhibited the dye uptake at concentrations as low as 5 µM, without affecting the gap junction communication and barrier function, even at concentrations of 20 µM. While CVB2-61 or CVB4-57 maintained a reduced dye uptake in Calu-3 cells, an enhancement of the dye uptake in response to the stimulation of adenosine signalling was still observed after removal of the agents. The report shows that CVB2-61 and CVB4-57 reversibly block Cx hemichannels. Deciphering the mechanisms of the interactions of these agents with Cx hemichannels could allow further development of phenolic compounds to target Cx hemichannels for better and safer treatment of pathologies that involve Cx hemichannels.

2.
Biofabrication ; 14(3)2022 05 17.
Article in English | MEDLINE | ID: mdl-35472717

ABSTRACT

Leukemia patients undergo chemotherapy to combat the leukemic cells (LCs) in the bone marrow. During therapy not only the LCs, but also the blood-producing hematopoietic stem and progenitor cells (HSPCs) may be destroyed. Chemotherapeutics targeting only the LCs are urgently needed to overcome this problem and minimize life-threatening side-effects. Predictivein vitrodrug testing systems allowing simultaneous comparison of various experimental settings would enhance the efficiency of drug development. Here, we present a three-dimensional (3D) human leukemic bone marrow model perfused using a magnetic, parallelized culture system to ensure media exchange. Chemotherapeutic treatment of the acute myeloid leukemia cell line KG-1a in 3D magnetic hydrogels seeded with mesenchymal stem/stromal cells (MSCs) revealed a greater resistance of KG-1a compared to 2D culture. In 3D tricultures with HSPCs, MSCs and KG-1a, imitating leukemic bone marrow, HSPC proliferation decreased while KG-1a cells remained unaffected post treatment. Non-invasive metabolic profiling enabled continuous monitoring of the system. Our results highlight the importance of using biomimetic 3D platforms with proper media exchange and co-cultures for creatingin vivo-like conditions to enablein vitrodrug testing. This system is a step towards drug testing in biomimetic, parallelizedin vitroapproaches, facilitating the discovery of new anti-leukemic drugs.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Bone Marrow Cells , Cell Differentiation , Cell Proliferation , Coculture Techniques , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism
3.
Mol Cell Biochem ; 476(10): 3655-3670, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34052945

ABSTRACT

As a response to pro-inflammatory signals mesenchymal stem cells (MSCs) secrete agents and factors leading to lymphocyte recruitment, counteracting inflammation, and stimulating immunosuppression. On a molecular level, the signalling mediator TGF-ß-activated kinase 1 (TAK1) is activated by many pro-inflammatory signals, plays a critical role in inflammation and regulates innate and adaptive immune responses as well. While the role of TAK1 as a signalling factor promoting inflammation is well documented, we also considered a role for TAK1 in anti-inflammatory actions exerted by activated MSCs. We, therefore, investigated the capacity of lipopolysaccharide (LPS)-treated murine MSCs with lentivirally modulated TAK1 expression levels to recruit lymphocytes. TAK1 downregulated by lentiviral vectors expressing TAK1 shRNA in murine MSCs interfered with the capacity of murine MSCs to chemoattract lymphocytes, indeed. Analysing a pool of 84 secreted factors we found that among 26 secreted cytokines/factors TAK1 regulated expression of one cytokine in LPS-activated murine MSCs in particular: interleukin-6 (IL-6). IL-6 in LPS-treated MSCs was responsible for lymphocyte recruitment as substantiated by neutralizing antibodies. Our studies, therefore, suggest that in LPS-treated murine MSCs the inflammatory signalling mediator TAK1 may exert anti-inflammatory properties via IL-6.


Subject(s)
Interleukin-6/immunology , Lipopolysaccharides/pharmacology , Lymphocytes/immunology , MAP Kinase Kinase Kinases/immunology , MAP Kinase Signaling System/drug effects , Mesenchymal Stem Cells/immunology , Animals , HEK293 Cells , Humans , Interleukin-6/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice
4.
Int J Mol Sci ; 21(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707785

ABSTRACT

Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.


Subject(s)
Bone and Bones/metabolism , Inflammation/immunology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/genetics , Tendons/metabolism , Animals , Bone and Bones/enzymology , Cartilage/enzymology , Cartilage/metabolism , Humans , Inflammation/enzymology , Inflammation/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , Regeneration/drug effects , Regeneration/genetics , Regeneration/immunology , Tendons/anatomy & histology , Tendons/embryology , Tendons/enzymology
5.
FEBS Open Bio ; 9(5): 840-850, 2019 05.
Article in English | MEDLINE | ID: mdl-31034164

ABSTRACT

Connexins (Cx) are proteins that form cell-to-cell gap junction channels. A mutation at position 188 in the second extracellular loop (E2) domain of hCx46 has been linked to an autosomal dominant zonular pulverulent cataract. As it is dominantly inherited, it is possible that the mutant variant affects the co-expressed wild-type Cx and/or its interaction with other cellular components. Here, we proposed to use concatenated hCx46wt-hCx46N188T and hCx46N188T-hCx46wt to analyze how hCx46N188T affected co-expressed hCx46wt to achieve a dominant inheritance. Heterodimer hCx46wt-hCx46N188T formed fewer gap junction plaques compared to homodimer hCx46wt-hCx46wt, while the hCx46N188T-hCx46N188T homodimer formed almost no gap junction plaques. Dye uptake experiments showed that hemichannels of concatenated variants were similar to hemichannels of monomers. Molecular dynamics simulations revealed that for docking, the N188 of a protomer was engaged in hydrogen bonds (HBs) with R180, N189, and D191 of the counterpart protomer of the adjacent hemichannel. T188 suppressed the formation of HBs between protomers. Molecular dynamics simulations of an equimolar hCx46wt/hCx46N188T gap junction channel revealed a reduced number of HBs between protomers, suggesting reduction of gap junction channels between lens fibers co-expressing the variants.


Subject(s)
Connexins/genetics , DNA, Concatenated/genetics , Molecular Dynamics Simulation , Mutation/genetics , Cataract/congenital , Cataract/genetics , Connexins/metabolism , DNA, Concatenated/metabolism , Gap Junctions/genetics , HeLa Cells , Humans
6.
Int J Mol Sci ; 19(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30217016

ABSTRACT

Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.


Subject(s)
Connexin 26/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Ion Channels/metabolism , Animals , Connexin 26/genetics , Connexins/genetics , Gap Junctions/genetics , HeLa Cells , Humans , Patch-Clamp Techniques , Xenopus laevis
7.
PLoS One ; 12(6): e0178744, 2017.
Article in English | MEDLINE | ID: mdl-28591165

ABSTRACT

Targeting mitochondrial energy metabolism is a novel approach in cancer research and can be traced back to the description of the Warburg effect. Dichloroacetate, a controversially discussed subject of many studies in cancer research, is a pyruvate dehydrogenase kinase inhibitor. Dichloroacetate causes metabolic changes in cancerous glycolysis towards oxidative phosphorylation via indirect activation of pyruvate dehydrogenase in mitochondria. Canine mammary cancer is frequently diagnosed but after therapy prognosis still remains poor. In this study, canine mammary carcinoma, adenoma and non-neoplastic mammary gland cell lines were treated using 10 mM Dichloroacetate. The effect on cell number, lactate release and PDH expression and cell respiration was investigated. Further, the effect on apoptosis and several apoptotic proteins, proliferation, and microRNA expression was evaluated. Dichloroacetate was found to reduce cell proliferation without inducing apoptosis in all examined cell lines.


Subject(s)
Apoptosis/drug effects , Dichloroacetic Acid/pharmacology , Mammary Glands, Animal/cytology , Animals , Cell Count , Cell Line , Cell Proliferation/drug effects , Cell Respiration/drug effects , Dogs , Female , Inhibitor of Apoptosis Proteins/metabolism , Lactic Acid/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Time Factors
8.
Int J Oncol ; 49(6): 2341-2350, 2016 12.
Article in English | MEDLINE | ID: mdl-27748833

ABSTRACT

The Warburg effect describes the ability of cancer cells to produce energy via aerobic glycolysis instead of oxidative phosphorylation of pyruvate. This deviation in mitochondrial metabolism inhibits apoptosis, allowing increased proliferation under conditions of reduced oxygen levels. Dichloroacetate (DCA) was successfully used in several human cancer cell lines to reactivate oxidative phosphorylation in mitochondria. The aim of this study was the characterization and response of canine cancer cell lines after DCA exposure. The effect of 10 mM DCA was characterized in vitro on a set of six canine prostate adenocarcinoma and transitional cell carcinoma (TCC) derived cell lines. Cell counts, lactate levels, apoptosis, expression of apoptotic proteins, survival factors and different miRNAs were analyzed. Additionally, metabolic activity, mitochondrial activity and proliferation were investigated. DCA significantly decreased cell number of all but one utilized cell lines and leads to a significant reduction of lactate release. Decreased survivin levels were found in all cell lines, two of which presented a significant reduction in metabolic activity. Increased miR-375 levels were measured in all TCC cell lines. Reactivation of pyruvate dehydrogenase and an elevated mitochondrial activity appear to induce the transition from aerobic glycolysis back to oxidative phosphorylation. Further, these results display that DCA treatment has a suppressant effect on proliferation of canine cancer cells.


Subject(s)
Adenocarcinoma/pathology , Carcinoma, Transitional Cell/pathology , Dichloroacetic Acid/pharmacology , Glycolysis/drug effects , Ketone Oxidoreductases/metabolism , Oxidative Phosphorylation/drug effects , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dogs , Male , MicroRNAs/genetics , Mitochondria/metabolism , Prostate/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
9.
Chemosphere ; 161: 112-118, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27423128

ABSTRACT

We combine confocal Raman microscopy (CRM) of wet samples with subsequent Fluorescent in situ hybridization (FISH) without significant limitations to either technique for analyzing the same sample of a microbial community on a cell-to-cell basis. This combination of techniques allows a much deeper, more complete understanding of complex environmental samples than provided by either technique alone. The minimalistic approach is based on laboratory glassware with micro-engravings for reproducible localization of the sample at cell scale combined with a fixation and de- and rehydration protocol for the respective techniques. As proof of concept, we analyzed a floc of nitrifying activated sludge, demonstrating that the sample can be tracked with cell-scale precision over different measurements and instruments. The collected information includes the microbial content, spatial shape, variant chemical compositions of the floc matrix and the mineral microparticles embedded within. In addition, the direct comparison of CRM and FISH revealed a difference in reported cell size due to the different cell components targeted by the respective technique. To the best of our knowledge, this is the first report of a direct cell-to-cell comparison of confocal Raman microscopy and Fluorescent in situ hybridization analysis performed on the same sample. An adaptation of the method to include native samples as a starting point is planned for the near future. The micro-engraving approach itself also opens up the possibility of combining other, functionally incompatible techniques as required for further in-depth investigations of low-volume samples.


Subject(s)
Biofilms , In Situ Hybridization, Fluorescence , Microscopy, Confocal , Sewage , Spectrum Analysis, Raman
10.
Data Brief ; 7: 93-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26958636

ABSTRACT

The structure of hCx26 derived from the X-ray analysis was used to generate a homology model for hCx46. Interacting connexin molecules were used as starting model for the molecular dynamics (MD) simulation using NAMD and allowed us to predict the dynamic behavior of hCx46wt and the cataract related mutant hCx46N188T as well as two artificial mutants hCx46N188Q and hCx46N188D. Within the 50 ns simulation time the docked complex composed of the mutants dissociate while hCx46wt remains stable. The data indicates that one hCx46 molecule forms 5-7 hydrogen bonds (HBs) with the counterpart connexin of the opposing connexon. These HBs appear essential for a stable docking of the connexons as shown by the simulation of an entire gap junction channel and were lost for all the tested mutants. The data described here are related to the research article entitled "The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels" (Schadzek et al., 2015) [1].

11.
Biochim Biophys Acta ; 1858(1): 57-66, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26449341

ABSTRACT

The mutation N188T in human connexin46 (hCx46) correlates with a congenital nuclear pulverulent cataract. This mutation is in the second extracellular loop, a domain involved in docking of gap junction hemichannels. To analyze the functional consequences of this mutation, we expressed hCx46N188T and the wild type (hCx46wt) in Xenopus oocytes and HeLa cells. In Xenopus oocytes, hemichannels formed by hCx46wt and hCx46N188T had similar electrical properties. Additionally, a Ca(2+) and La(3+) sensitive current was observed in HeLa cells expressing eGFP-labeled hCx46wt or eGFP-labeled hCx46N188T. These results suggest that the N188T mutation did not alter apparent expression and the membrane targeting of the protein. Cells expressing hCx46wt-eGFP formed gap junction plaques, but plaques formed by hCx46N188T were extremely rare. A reduced plaque formation was also found in cells cotransfected with hCx46N188T-eGFP and mCherry-labeled hCx46wt as well as in cocultured cells expressing hCx46N188T-eGFP and hCx46wt-mCherry. Dye transfer experiments in cells expressing hCx46N188T revealed a lower transfer rate than cells expressing hCx46wt. We postulate that the N188T mutation affects intercellular connexon docking. This hypothesis is supported by molecular modeling of hCx46 using the crystal structure of hCx26 as a template. The model indicated that N188 is important for hemichannel docking through formation of hydrogen bonds with the residues R180, T189 and D191 of the opposing hCx46. The results suggest that the N188T mutation hinders the docking of the connexons to form gap junction channels. Moreover, the finding that a glutamine substitution (hCx46N188Q) could not rescue the docking emphasizes the specific role of N188.


Subject(s)
Connexins/chemistry , Gap Junctions/metabolism , Xenopus laevis/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Calcium/metabolism , Cations, Divalent , Connexins/genetics , Connexins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gap Junctions/chemistry , Gap Junctions/ultrastructure , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrogen Bonding , Ion Transport , Lanthanum/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Patch-Clamp Techniques , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Red Fluorescent Protein
12.
J Bioenerg Biomembr ; 45(1-2): 59-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065326

ABSTRACT

The C-terminus (CT) of rCx46 consists of 186 residues (H230-I416). Recent studies showed that rCx46(28.2), truncated after H243, altered the formation of functional hemichannels when expressed in Xenopus oocytes, while rCx46(37.7), truncated after A333 formed gap junction hemichannels similarly to rCx46(wt). To analyze the role of the CT up to A333 in functional expression with cell imaging and dye-transfer techniques, different mutants were generated by C-terminal truncation between H243-A333, labeled with EGFP and expressed in HeLa cells. These rCx46 variants were characterized according to their compartmentalization in organelles, their presence in microscopic detectable vesicles and their ability to form gap junction plaques. rCx46 truncated after A311 (rCx46(35.3)) was compartmentalized, was found in vesicles and formed functional gap junction plaques similarly to rCx46(wt). With a truncation after P284 (rCx46(32.6)), the protein was not compartmentalized and the amount of vesicles containing the protein were reduced; however, functional gap junction plaque formation was not affected as compared to rCx46(35.3). rCx46(28.2) did not form functional gap junction plaques; it was not found in vesicles or in cellular compartments. Live-cell imaging and detection of annular junctions for rCx46(32.6) and rCx46(35.3) revealed that the truncation after P284 reduced the frequency of vesicle budding from gap junction plaques and the formation of annular junctions. These results suggest that the C-terminal region of rCx46 up to A311 (rCx46(35.3)) is necessary for its correct compartmentalization and internalization in the form of annular junctions, while the H230-P284 C-terminal region (rCx46(32.6)) is sufficient for the formation of dye coupled gap junction channels.


Subject(s)
Connexins/biosynthesis , Gap Junctions/metabolism , Gene Expression , Secretory Vesicles/metabolism , Animals , Connexins/genetics , Gap Junctions/genetics , HeLa Cells , Humans , Oocytes , Protein Structure, Tertiary , Protein Transport/physiology , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Secretory Vesicles/genetics , Xenopus
13.
J Bioenerg Biomembr ; 44(5): 607-14, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22843197

ABSTRACT

Connexin46 (Cx46), together with Cx50, forms gap junction channels between lens fibers and participates in the lens pump-leak system, which is essential for the homeostasis of this avascular organ. Mutations in Cx50 and Cx46 correlate with cataracts, but the functional relationship between the mutations and cataract formation is not always clear. Recently, it was found that a mutation at the third position of hCx46 that substituted an aspartic acid residue with a tyrosine residue (hCx46D3Y) caused an autosomal dominant zonular pulverulent cataract. We expressed EGFP-labeled hCx46wt and hCx46D3Y in HeLa cells and found that the mutation did not affect the formation of gap junction plaques. Dye transfer experiments using Lucifer Yellow (LY) and ethidium bromide (EthBr) showed an increased degree of dye coupling between the cell pairs expressing hCx46D3Y in comparison to the cell pairs expressing hCx46wt. In Xenopus oocytes, two-electrode voltage-clamp experiments revealed that hCx46wt formed voltage-sensitive hemichannels. This was not observed in the oocytes expressing hCx46D3Y. The replacement of the aspartic acid residue at the third position by another negatively charged residue, glutamic acid, to generate the mutant hCx46D3E, restored the voltage sensitivity of the resultant hemichannels. Moreover, HeLa cell pairs expressing hCx46D3E and hCx46wt showed a similar degree of dye coupling. These results indicate that the negatively charged aspartic acid residue at the third position of the N-terminus of hCx46 could be involved in the determination of the degree of metabolite cell-to-cell coupling and is essential for the voltage sensitivity of the hCx46 hemichannels.


Subject(s)
Cataract/metabolism , Connexins/metabolism , Eye Diseases, Hereditary/metabolism , Gap Junctions/metabolism , Mutation, Missense , Amino Acid Substitution , Animals , Cataract/genetics , Connexins/genetics , Ethidium/pharmacology , Eye Diseases, Hereditary/genetics , Fluorescent Dyes/pharmacology , Gap Junctions/genetics , HeLa Cells , Humans , Isoquinolines/pharmacology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...