Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23993102

ABSTRACT

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Neoplasms/genetics
2.
J Am Chem Soc ; 135(26): 9675-80, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23725514

ABSTRACT

The Hedgehog signaling pathway is involved in the development of multicellular organisms and, when deregulated, can contribute to certain cancers, among other diseases. The molecular characterization of the pathway, which has been enabled by small-molecule probes targeting its components, remains incomplete. Here, we report the discovery of two potent, small-molecule inhibitors of the Sonic Hedgehog (Shh) pathway, BRD50837 and BRD9526. Both compounds exhibit stereochemistry-based structure-activity relationships, a feature suggestive of a specific and selective interaction of the compounds with as-yet-unknown cellular target(s) and made possible by the strategy used to synthesize them as members of a stereochemically and skeletally diverse screening collection. The mechanism-of-action of these compounds in some ways shares similarities to that of cyclopamine, a commonly used pathway inhibitor. Yet, in other ways their mechanism-of-action is strikingly distinct. We hope that these novel compounds will be useful probes of this complex signaling pathway.


Subject(s)
Drug Discovery , Hedgehog Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Hedgehog Proteins/metabolism , Mice , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...