Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Toxicol ; 40(1): 26-39, 2021.
Article in English | MEDLINE | ID: mdl-33176523

ABSTRACT

Predictive indicators of testicular toxicity could improve drug development by allowing early in-life screening for this adverse effect before it becomes severe. We hypothesized that circulating microRNAs (miRNAs) could serve as testicular toxicity biomarkers in dogs. Herein, we describe the results of an exploratory study conducted to discover biomarkers of drug-induced testicular injury. Following a dose-selection study using the testicular toxicant ethylene glycol monomethyl ether (EGME), we chose a dose of 50 mg/kg/d EGME to avoid systemic toxicity and treated 2 groups of dogs (castrated, non-castrated) for 14 to 28 days. Castrated animals were used as negative controls to identify biomarkers specific for testicular toxicity because EGME can cause toxicity to organ systems in addition to the testis. Blood was collected daily during the dosing period, followed by recovery for 29 to 43 days with less frequent sampling. Dosing was well tolerated, resulting in mild-to-moderate degeneration in testes and epididymides. Global profiling of serum miRNAs at selected dosing and recovery time points was completed by small RNA sequencing. Bioinformatics data analysis using linear modeling demonstrated several circulating miRNAs that were differentially abundant during the dosing period compared with baseline and/or castrated control samples. Confirmatory reverse transcription quantitative polymerase chain reaction data in these animals was unable to detect sustained alterations of miRNAs in serum, except for 1 potential candidate cfa-miR-146b. Taken together, we report the results of a comprehensive exploratory study and suggest future directions for follow-up research to address the challenge of developing diagnostic biomarkers of testicular toxicity.


Subject(s)
Circulating MicroRNA/drug effects , Drug Development/methods , Ethylene Glycols/toxicity , Genetic Markers/drug effects , Testis/drug effects , Animals , Disease Models, Animal , Dogs , Male
2.
Toxicol Pathol ; 44(3): 474-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26839331

ABSTRACT

Dogs have been often chosen as a nonrodent species for preclinical development of small molecule drugs mainly due to availability and relative ease of handling. Recently, focus has increased on the minipig as a potential alternative to the dog, based on either scientific rationale or public opinion concerns. There are, however, other factors influencing nonrodent choices, in particular drug amount and synthesis time, which differ between species and therefore may impact the milestones of a drug development program. To assess the magnitude of compound need, a retrospective internal survey was conducted on drug amounts used in dog studies which were translated into the requirements for minipigs. Compound need approximately doubles if minipigs are used. Costs of compound are accordingly higher, and synthesis times are slightly increased. In our company, the differences were not considered significant enough to preclude the use of minipigs if the later preclinical program might benefit from improved human risk prediction.


Subject(s)
Biomedical Research , Dogs , Drug Evaluation, Preclinical , Swine, Miniature , Animals , Biomedical Research/economics , Biomedical Research/methods , Biomedical Research/standards , Biomedical Research/statistics & numerical data , Drug Evaluation, Preclinical/economics , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/statistics & numerical data , Female , Male , Models, Animal , Research Design , Retrospective Studies , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...