Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 600(7889): 512-516, 2021 12.
Article in English | MEDLINE | ID: mdl-34544114

ABSTRACT

The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in individuals who are SARS-CoV-2 convalescent and vaccinated are key determinants of neutralization breadth and the genetic barrier to viral escape1-4. Using HIV-1 pseudotypes and plasma selection experiments with vesicular stomatitis virus/SARS-CoV-2 chimaeras5, here we show that multiple neutralizing epitopes, within and outside the receptor-binding domain, are variably targeted by human polyclonal antibodies. Antibody targets coincide with spike sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic 'polymutant' spike protein pseudotypes that resisted polyclonal antibody neutralization to a similar degree as circulating variants of concern. By aggregating variant of concern-associated and antibody-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in the SARS-CoV-2 spike protein are sufficient to generate pseudotypes with near-complete resistance to the polyclonal neutralizing antibodies generated by individuals who are convalescent or recipients who received an mRNA vaccine. However, plasma from individuals who had been infected and subsequently received mRNA vaccination neutralized pseudotypes bearing this highly resistant SARS-CoV-2 polymutant spike, or diverse sarbecovirus spike proteins. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against potential future sarbecovirus pandemics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion , Immune Sera/immunology , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Convalescence , Cross Reactions , Humans , Neutralization Tests , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
2.
N Engl J Med ; 384(23): 2212-2218, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33882219

ABSTRACT

Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of clinical concern. In a cohort of 417 persons who had received the second dose of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine at least 2 weeks previously, we identified 2 women with vaccine breakthrough infection. Despite evidence of vaccine efficacy in both women, symptoms of coronavirus disease 2019 developed, and they tested positive for SARS-CoV-2 by polymerase-chain-reaction testing. Viral sequencing revealed variants of likely clinical importance, including E484K in 1 woman and three mutations (T95I, del142-144, and D614G) in both. These observations indicate a potential risk of illness after successful vaccination and subsequent infection with variant virus, and they provide support for continued efforts to prevent and diagnose infection and to characterize variants in vaccinated persons. (Funded by the National Institutes of Health and others.).


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Vaccines , COVID-19/virology , Mutation , SARS-CoV-2/genetics , 2019-nCoV Vaccine mRNA-1273 , Aged , Antibodies, Viral/blood , BNT162 Vaccine , COVID-19/diagnosis , Female , Humans , Middle Aged , Neutralization Tests , Phylogeny , Polymerase Chain Reaction , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...