Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1863(6 Pt B): 1447-59, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26826650

ABSTRACT

While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.


Subject(s)
Calcium Signaling , Calcium/metabolism , Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Proliferation/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/therapy , Humans , Neoplastic Stem Cells/pathology , Tumor Microenvironment/genetics
2.
Anal Chem ; 87(17): 8858-66, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26260548

ABSTRACT

Swiftness, reliability, and sensitivity of live bacteria detection in drinking water are key issues for human safety. The most widespread used indicator of live bacteria is a caged form of carboxyfluorescein in which 3' and 6' hydroxyl groups are masked as acetate esters (CFDA). This derivatization altogether abolishes fluorescein fluorescence and renders the molecule prone to passive diffusion through bacterial membranes. Once in the cytoplasm, acetate groups from CFDA are removed by bacterial hydrolases and fluorescence develops, rendering live but not dead cells detectable. Yet the reagent, carboxyfluorescein diacetate, still possesses a free carboxyl group whose ionization constant is such that the majority of the probe is charged at physiological pH. This unfavors probe permeation through membranes. Here, we prepare several chemical modifications of the carboxyl moiety of CFDA, in order to neutralize its charge and improve its passive diffusion through membranes. We show that the ethylamido derivative of the 5-carboxyl group from 5-carboxy-fluorescein diacetate or from Oregon green diacetate or from Oregon green diacetoxymethylester are stable molecules in biological media, penetrate into bacterial cells and are metabolized into fluorescent species. Only live bacteria are revealed since bleached samples are not labeled. Other derivatives with modification of the 5-carboxyl group with an ester group or with a thiourea-based moiety were almost inefficient probes. The most interesting probe, triembarine (5-ethylaminocarboxy-oregon green, 3',6'diacetoxymethyl ester) leads to 6-10 times more sensitive detection of bacteria as compared to CFDA. Addition of contrast agents (trypan blue or brilliant blue R) improve the signal-to-noise ratio by quenching extracellular fluorescence while bromophenol blue quenches both intracellular and extracellular fluorescence, allowing standardization of detections.


Subject(s)
Bacteria/isolation & purification , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Microbial Viability , Bacillus subtilis/isolation & purification , Chryseobacterium/isolation & purification , Enterobacter cloacae/isolation & purification , Escherichia coli/isolation & purification , Pseudomonas aeruginosa/isolation & purification
3.
Cell Cycle ; 14(16): 2655-66, 2015.
Article in English | MEDLINE | ID: mdl-26101806

ABSTRACT

The transcription factor ATF7 undergoes multiple post-translational modifications, each of which has distinct effects upon ATF7 function. Here, we show that ATF7 phosphorylation on residue Thr112 exclusively occurs during mitosis, and that ATF7 is excluded from the condensed chromatin. Both processes are CDK1/cyclin B dependent. Using a transduced neutralizing monoclonal antibody directed against the Thr112 epitope in living cells, we could demonstrate that Thr112 phosphorylation protects endogenous ATF7 protein from degradation, while it has no effect on the displacement of ATF7 from the condensed chromatin. The crucial role of Thr112 phosphorylation in stabilizing ATF7 protein during mitosis was confirmed using phospho-mimetic and phospho-deficient mutants. Finally, silencing ATF7 by CRISPR/Cas9 technology leads to a decrease of cyclin D1 protein expression levels. We propose that mitotic stabilized ATF7 protein re-localizes onto chromatin at the end of telophase and contributes to induce the cyclin D1 gene expression.


Subject(s)
Activating Transcription Factors/metabolism , Cyclin D1/genetics , Cyclin-Dependent Kinases/physiology , Mitosis , Animals , CDC2 Protein Kinase , Chromatin/metabolism , Cyclin D1/metabolism , HeLa Cells , Humans , Mice , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Stability , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...