Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 38(4): 715-22, 1979 Oct.
Article in English | MEDLINE | ID: mdl-539823

ABSTRACT

Experiments were carried out to construct pseudomonad strains capable of the biodegradation of certain recalcitrant branched hydrocarbons via a combination of alkane and citronellol degradative pathways. To promote the metabolism of the recalcitrant hydrocarbon 2,6-dimethyl-2-octene we transferred the OCT plasmid to Pseudomonas citronellolis, a pseudomonad containing the citronellol pathway. This extended the n-alkane substrate range of the organism, but did not permit utilization of the branched hydrocarbon even in the presence of a gratuitous inducer of the OCT plasmid. In a separate approach n-decane-utilizing (Dec+) mutants of P. citronellolis were selected and found to be constitutive for the expression of medium- to long-chain alkane oxidation. The Dec+ mutants were capable of degradation of 2,6-dimethyl-2-octene via the citronellol pathway as shown by (i) conversion of the hydrocarbon to citronellol, determined by gas-liquid chromatography-mass spectrometry, (ii) induction of geranyl-coenzyme A carboxylase, a key enzyme of the citronellol pathway, and (iii) demonstration of beta-decarboxymethylation of the hydrocarbon by whole cells. The Dec+ mutants had also acquired the capacity to metabolize other recalcitrant branched hydrocarbons such as 3,6-dimethyloctane and 2,6-dimethyldecane. These studies demonstrate how enzyme recruitment can provide a pathway for the biodegradation of otherwise recalcitrant branched hydrocarbons.


Subject(s)
Alkanes/metabolism , Alkenes/metabolism , Carbon-Carbon Ligases , Ligases/biosynthesis , Ligases/metabolism , Monoterpenes , Pseudomonas/metabolism , Acyclic Monoterpenes , Biodegradation, Environmental , Conjugation, Genetic , Enzyme Induction , Mutation , Octanes/metabolism , Plasmids , Pseudomonas/genetics , Species Specificity , Terpenes/biosynthesis
2.
Appl Environ Microbiol ; 38(4): 742-6, 1979 Oct.
Article in English | MEDLINE | ID: mdl-539824

ABSTRACT

A variety of octane-utilizing bacteria and fungi were screened for growth on some terminally branched dimethyloctane derivatives to explore the effects of iso- and anteiso-termini on the biodegradability of such hydrocarbons. Of 27 microbial strains tested, only 9 were found to use any of the branched hydrocarbons tested as a sole carbon source, and then only those hydrocarbons containing at least one iso-terminus were susceptible to degradation. Anteiso-or isopropenyl termini prevented biodegradation. None of the hydrocarbonoclastic yeasts tested was able to utilize branched-hydrocarbon growth sustrates. In the case of pseudomonads containing the OCT plasmid, whole-cell oxidation of n-octane was poorly induced by terminally branched dimethyloctanes. In the presence of a gratuitous inducer of the octane-oxidizing enzymes, the iso-branched 2,7-dimethyloctane was slowly oxidized by whole cells, whereas the anteiso-branched 3,6-dimethyloctane was not oxidized at all. This microbial sampling dramatically illustrated the deleterious effect of alkyl branching, especially anteiso-terminal branching, on the biodegradation of hydrocarbons.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Octanes/metabolism , Bacteria/growth & development , Biodegradation, Environmental , Fungi/growth & development , Plasmids , Pseudomonas/genetics , Pseudomonas/growth & development , Pseudomonas/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...