Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(45): 10265-10275, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32356389

ABSTRACT

Crystalline thin films of π-conjugated molecules are relevant as the active layers in organic electronic devices. Therefore, materials with enhanced control over the supramolecular arrangement, crystallinity, and thin-film morphology are desirable. Herein, it is reported that hydrogen-bonded substituents serve as additional structure-directing elements that positively affect crystallization, thin-film morphology, and device performance of p-type organic semiconductors. It is observed that a quaterthiophene diacetamide exhibits a denser packing than that of other quaterthiophenes in the single-crystal structure and, as a result, displays enhanced intermolecular electronic interactions. This feature was preserved in crystalline thin films that exhibited a layer-by-layer morphology, with large domain sizes and high internal order. As a result, organic field-effect transistors of these polycrystalline thin films showed mobilities in the range of the best mobility values reported for single-crystalline quaterthiophenes. The use of hydrogen-bonded groups may, thus, provide an avenue for organic semiconducting materials with improved morphology and performance.

2.
Langmuir ; 26(18): 15044-9, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20735048

ABSTRACT

In organic thin-film transistors (OTFTs), the conducting channel is located near the interface between the organic semiconductor and the oxide dielectric; this interface is crucial for transistor performance. Self-assembled monolayers (SAMs) on the interface reduce the negative influences of the oxide dielectric surface by decreasing the coupling of the carriers at the gate and the role of the active surface defects on transfer. In this paper, we show that SAMs carrying a dipole moment determine the OTFT performance by controlling the charge transfer between the oxide dielectric and the semiconductor. The charges introduced into the semiconductor by this transfer (i.e., residual carriers) lead to a threshold shift to positive values, as well as a decrease in the contact resistance and an increase in the apparent mobility. In this study, other effects of the SAMs, such as the gate potential shift in the channel or a direct reaction between semiconductor and SAM molecules, can be excluded as dominant processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...