Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(16): 9478-9485, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29993236

ABSTRACT

Capture of CO2, originating from both fossil fuels, such as coal combustion, and from renewables, such as biogas, appears to be one of the greatest technological challenges of this century. In this study, we show that membrane capacitive deionization (MCDI) can be used to capture CO2 as bicarbonate and carbonate ions produced from the reaction of CO2 with water. This novel approach allows capturing CO2 at room temperature and atmospheric pressure without the use of chemicals. In this process, the adsorption and desorption of bicarbonate ions from the deionized water solution drive the CO2(g) absorption-desorption from the gas phase. In this work, the effects of the current density and the CO2 partial pressure were studied. We found that between 55 and 75% of the electrical charge of the capacitive electrodes can be directly used to absorb CO2 gas. The energy requirement of such a system was found to be ≈40 kJ mol-1 at 15% CO2 and could be further improved by reducing the ohmic and non-ohmic energy losses of the MCDI cell.


Subject(s)
Carbon Dioxide , Water Purification , Adsorption , Electrodes , Ions
2.
Water Res ; 90: 62-70, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26724440

ABSTRACT

A clinoptilolite-based mixed matrix membrane (MMM) was developed and studied for the selective recovery of ammonium and potassium. Adsorption of sodium (Na(+)), potassium (K(+)) and ammonium (NH4(+)) was investigated with single salt and equimolar salt solution under static and dynamic conditions. Furthermore, the adsorption capacity of clinoptilolite was investigated when embedded in the MMM and in clay form. Two conditioning methods were compared: HCl and NaCl. Conditioned clinoptilolite with NaCl gave higher static adsorption capacities than with HCl which alters the chemical structure of clinoptilolite. The adsorption of Na(+) was not detected in the static adsorption experiments and results showed that Na(+) adsorbed during the conditioning process it was exchanged by K(+) and NH4(+).The clinoptilolite embedded in MMM reduced the porosity of the MMM so the highest adsorption capacity was reached when the amount of polymer was the lowest: 30 wt% polymer and 70 wt% clinoptilolite. The application of MMM in a dead-end filtration cell (dynamic adsorption) resulted in higher adsorption capacities compared to static conditions and comparable results between synthetic solutions and diluted urine samples. This indicates that MMM is a suitable method for the recovery of K(+) and NH4(+) directly from a diluted urine matrix. The desorption (recovery) of K(+) and NH4(+) from MMM was higher using water at 60 °C than using an acidic treatment.


Subject(s)
Ammonium Compounds/isolation & purification , Membranes, Artificial , Potassium/isolation & purification , Waste Disposal, Fluid/methods , Zeolites/chemistry , Adsorption , Ammonium Compounds/urine , Humans , Potassium/urine
3.
J Colloid Interface Sci ; 418: 200-7, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24461836

ABSTRACT

Recently, a new technology has been proposed for the utilization of energy from CO2 emissions (Hamelers et al., 2014). The principle consists of controlling the dilution process of CO2-concentrated gas (e.g., exhaust gas) into CO2-dilute gas (e.g., air) thereby extracting a fraction of the released mixing energy. In this paper, we describe the theoretical fundamentals of this technology when using a pair of charge-selective capacitive electrodes. We focus on the behavior of the chemical system consisting of CO2 gas dissolved in water or monoethanolamine solution. The maximum voltage given for the capacitive cell is theoretically calculated, based on the membrane potential. The different aspects that affect this theoretical maximum value are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...