Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Fluids Barriers CNS ; 21(1): 58, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020361

ABSTRACT

BACKGROUND: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS: We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS: ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS: Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.


Subject(s)
Alzheimer Disease , Choroid Plexus , Disease Models, Animal , Mice, Transgenic , Proteomics , Choroid Plexus/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/cerebrospinal fluid , Animals , Humans , Mice , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Proteome/metabolism , Male , Female , Mice, Inbred C57BL
2.
Alzheimers Dement ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970402

ABSTRACT

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.

3.
Brain Commun ; 6(4): fcae162, 2024.
Article in English | MEDLINE | ID: mdl-39051027

ABSTRACT

The dynamic phase of preclinical Alzheimer's disease, as characterized by accumulating cortical amyloid-ß, is a window of opportunity for amyloid-ß-lowering therapies to have greater efficacy. Biomarkers that accurately predict amyloid-ß accumulation may be of critical importance for participant inclusion in secondary prevention trials and thus enhance development of early Alzheimer's disease therapies. We compared the abilities of baseline plasma pTau181, pTau217 and amyloid-ß PET load to predict future amyloid-ß accumulation in asymptomatic elderly. In this longitudinal cohort study, baseline plasma pTau181 and pTau217 were quantified using single molecule array assays in cognitively unimpaired elderly selected from the community-recruited F-PACK cohort based on the availability of baseline plasma samples and longitudinal amyloid-ß PET data (median time interval = 5 years, range 2-10 years). The predictive abilities of pTau181, pTau217 and PET-based amyloid-ß measures for PET-based amyloid-ß accumulation were investigated using receiver operating characteristic analyses, correlations and stepwise regression analyses. We included 75 F-PACK subjects (mean age = 70 years, 48% female), of which 16 were classified as amyloid-ß accumulators [median (interquartile range) Centiloid rate of change = 3.42 (1.60) Centiloids/year). Plasma pTau181 [area under the curve (95% confidence interval) = 0.72 (0.59-0.86)] distinguished amyloid-ß accumulators from non-accumulators with similar accuracy as pTau217 [area under the curve (95% confidence interval) = 0.75 (0.62-0.88) and amyloid-ß PET [area under the curve (95% confidence interval) = 0.72 (0.56-0.87)]. Plasma pTau181 and pTau217 strongly correlated with each other (r = 0.93, Pfalse discovery rate < 0.001) and, together with amyloid-ß PET, similarly correlated with amyloid-ß rate of change (r pTau181 = 0.33, r pTau217 = 0.36, r amyloid-ß PET = 0.35, all Pfalse discovery rate ≤ 0.01). Addition of plasma pTau181, plasma pTau217 or amyloid-ß PET to a linear demographic model including age, sex and APOE-ε4 carriership similarly improved the prediction of amyloid-ß accumulation (ΔAkaike information criterion ≤ 4.1). In a multimodal biomarker model including all three biomarkers, each biomarker lost their individual predictive ability. These findings indicate that plasma pTau181, plasma pTau217 and amyloid-ß PET convey overlapping information and therefore predict the dynamic phase of asymptomatic amyloid-ß accumulation with comparable performances. In clinical trial recruitment, confirmatory PET scans following blood-based prescreening might thus not provide additional value for detecting participants in these early disease stages who are destined to accumulate cortical amyloid-ß. Given the moderate performances, future studies should investigate whether integrating plasma pTau species with other factors can improve performance and thus enhance clinical and research utility.

4.
Brain ; 147(3): 936-948, 2024 03 01.
Article in English | MEDLINE | ID: mdl-37787146

ABSTRACT

Blood-based biomarkers have been extensively evaluated for their diagnostic potential in Alzheimer's disease. However, their relative prognostic and monitoring capabilities for cognitive decline, amyloid-ß (Aß) accumulation and grey matter loss in cognitively unimpaired elderly require further investigation over extended time periods. This prospective cohort study in cognitively unimpaired elderly [n = 185, mean age (range) = 69 (53-84) years, 48% female] examined the prognostic and monitoring capabilities of glial fibrillary acidic protein (GFAP), neurofilament light (NfL), Aß1-42/Aß1-40 and phosphorylated tau (pTau)181 through their quantification in serum. All participants underwent baseline Aß-PET, MRI and blood sampling as well as 2-yearly cognitive testing. A subset additionally underwent Aß-PET (n = 109), MRI (n = 106) and blood sampling (n = 110) during follow-up [median time interval (range) = 6.1 (1.3-11.0) years]. Matching plasma measurements were available for Aß1-42/Aß1-40 and pTau181 (both n = 140). Linear mixed-effects models showed that high serum GFAP and NfL predicted future cognitive decline in memory (ßGFAP×Time = -0.021, PFDR = 0.007 and ßNfL×Time = -0.031, PFDR = 0.002) and language (ßGFAP×Time = -0.021, PFDR = 0.002 and ßNfL×Time = -0.018, PFDR = 0.03) domains. Low serum Aß1-42/Aß1-40 equally but independently predicted memory decline (ßAß1-42/Aß1-40×Time = -0.024, PFDR = 0.02). Whole-brain voxelwise analyses revealed that low Aß1-42/Aß1-40 predicted Aß accumulation within the precuneus and frontal regions, high GFAP and NfL predicted grey matter loss within hippocampal regions and low Aß1-42/Aß1-40 predicted grey matter loss in lateral temporal regions. Serum GFAP, NfL and pTau181 increased over time, while Aß1-42/Aß1-40 decreased only in Aß-PET-negative elderly. NfL increases associated with declining memory (ßNfLchange×Time = -0.030, PFDR = 0.006) and language (ßNfLchange×Time = -0.021, PFDR = 0.02) function and serum Aß1-42/Aß1-40 decreases associated with declining language function (ßAß1-42/Aß1-40×Time = -0.020, PFDR = 0.04). GFAP increases associated with Aß accumulation within the precuneus and NfL increases associated with grey matter loss. Baseline and longitudinal serum pTau181 only associated with Aß accumulation in restricted occipital regions. In head-to-head comparisons, serum outperformed plasma Aß1-42/Aß1-40 (ΔAUC = 0.10, PDeLong, FDR = 0.04), while both plasma and serum pTau181 demonstrated poor performance to detect asymptomatic Aß-PET positivity (AUC = 0.55 and 0.63, respectively). However, when measured with a more phospho-specific assay, plasma pTau181 detected Aß-positivity with high performance (AUC = 0.82, PDeLong, FDR < 0.007). In conclusion, serum GFAP, NfL and Aß1-42/Aß1-40 are valuable prognostic and/or monitoring tools in asymptomatic stages providing complementary information in a time- and pathology-dependent manner.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Aged , Male , Gray Matter/diagnostic imaging , Gray Matter/metabolism , Prospective Studies , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Amyloid/metabolism , Cognitive Dysfunction/metabolism , Biomarkers , Cognition , Positron-Emission Tomography
5.
Alzheimers Res Ther ; 15(1): 121, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438770

ABSTRACT

BACKGROUND: Gene expression is dysregulated in Alzheimer's disease (AD) patients, both in peripheral blood and post mortem brain. We investigated peripheral whole-blood gene (co)expression to determine molecular changes prior to symptom onset. METHODS: RNA was extracted and sequenced for 65 cognitively healthy F-PACK participants (65 (56-80) years, 34 APOE4 non-carriers, 31 APOE4 carriers), at baseline and follow-up (interval: 5.0 (3.4-8.6) years). Participants received amyloid PET at both time points and amyloid rate of change derived. Accumulators were defined with rate of change ≥ 2.19 Centiloids. We performed differential gene expression and weighted gene co-expression network analysis to identify differentially expressed genes and networks of co-expressed genes, respectively, with respect to traits of interest (APOE4 status, amyloid accumulation (binary/continuous)), and amyloid positivity status, followed by Gene Ontology annotation. RESULTS: There were 166 significant differentially expressed genes at follow-up compared to baseline in APOE4 carriers only, whereas 12 significant differentially expressed genes were found only in APOE4 non-carriers, over time. Among the significant genes in APOE4 carriers, several had strong evidence for a pathogenic role in AD based on direct association scores generated from the DISQOVER platform: NGRN, IGF2, GMPR, CLDN5, SMIM24. Top enrichment terms showed upregulated mitochondrial and metabolic pathways, and an exacerbated upregulation of ribosomal pathways in APOE4 carriers compared to non-carriers. Similarly, there were 33 unique significant differentially expressed genes at follow-up compared to baseline in individuals classified as amyloid negative at baseline and positive at follow-up or amyloid positive at both time points and 32 unique significant differentially expressed genes over time in individuals amyloid negative at both time points. Among the significant genes in the first group, the top five with the highest direct association scores were as follows: RPL17-C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. Top enrichment terms included upregulated metabolism and focal adhesion pathways. Baseline and follow-up gene co-expression networks were separately built. Seventeen baseline co-expression modules were derived, with one significantly negatively associated with amyloid accumulator status (r2 = - 0.25, p = 0.046). This was enriched for proteasomal protein catabolic process and myeloid cell development. Thirty-two follow-up modules were derived, with two significantly associated with APOE4 status: one downregulated (r2 = - 0.27, p = 0.035) and one upregulated (r2 = 0.26, p = 0.039) module. Top enrichment processes for the downregulated module included proteasomal protein catabolic process and myeloid cell homeostasis. Top enrichment processes for the upregulated module included cytoplasmic translation and rRNA processing. CONCLUSIONS: We show that there are longitudinal gene expression changes that implicate a disrupted immune system, protein removal, and metabolism in cognitively intact individuals who carry APOE4 or who accumulate in cortical amyloid. This provides insight into the pathophysiology of AD, whilst providing novel targets for drug and therapeutic development.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloidogenic Proteins , Apolipoprotein E4/genetics , Gene Expression Profiling , Transcription Factors , Transcriptome , Middle Aged , Aged, 80 and over
6.
Neuroimage Clin ; 37: 103321, 2023.
Article in English | MEDLINE | ID: mdl-36621019

ABSTRACT

PURPOSE: Measuring longitudinal changes in amyloid load in the asymptomatic stage of Alzheimer's disease is of high relevance for clinical research and progress towards more efficacious, timely treatments. Apolipoprotein E ε4 (APOE4) has a well-established effect on the rate of amyloid accumulation. Here we investigated which region of interest and which reference region perform best at detecting the effect of APOE4 on longitudinal amyloid load in individuals participating in the Flemish Prevent Alzheimer's Disease Cohort KU Leuven (F-PACK). METHODS: Ninety cognitively intact F-PACK participants (baseline age: 68 (52-80) years, 46 males, 42 APOE4 carriers) received structural MRI and 18F-Flutemetamol PET scans at baseline and follow-up (6.2 (3.4-10.9) year interval). Standardised uptake value ratios (SUVRs) and Centiloids (CLs) were calculated in a composite cortical volume of interest (SUVRcomp/CL) and in the precuneus (SUVRprec), and amyloid rate of change derived: (follow-up amyloid load - baseline amyloid load) / time interval (years). Four reference regions were used to derive amyloid load: whole cerebellum, cerebellar grey matter, eroded subcortical white matter, and pons. RESULTS: When using whole cerebellum or cerebellar grey matter as reference region, APOE4 carriers had a significantly higher SUVRcomp amyloid rate of change than non-carriers (pcorr = 0.004, t = 3.40 (CI 0.005-0.018); pcorr = 0.036, t = 2.66 (CI 0.003-0.018), respectively). Significance was not observed for eroded subcortical white matter or pons (pcorr = 0.144, t = 2.13 (CI 0.0003-0.008); pcorr = 0.116, t = 2.22 (CI 0.005-0.010), respectively). When using CLs as the amyloid measurement, and whole cerebellum, APOE4 carriers had a higher amyloid rate of change than non-carriers (pcorr = 0.012, t = 3.05 (CI 0.499-2.359)). Significance was not observed for the other reference regions. No significance was observed with any of the reference regions and amyloid rate of change in the precuneus (SUVRprec). CONCLUSION: In this cognitively intact cohort, a composite neocortical volume of interest together with whole cerebellum or cerebellar grey matter as reference region are the methods of choice for detecting APOE4-dependent differences in amyloid rate of change.


Subject(s)
Alzheimer Disease , Male , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Benzothiazoles , Amyloid/metabolism , Aniline Compounds , Positron-Emission Tomography/methods , Amyloidogenic Proteins , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism
7.
Acta Neuropathol ; 145(2): 175-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36481964

ABSTRACT

The major neuropathological hallmarks of Alzheimer's disease (AD) are amyloid ß (Aß) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear. The aim of this study was to investigate the contribution of pyroptosis, a pro-inflammatory mechanism of cell death downstream of the inflammasome, to neurodegeneration in AD. Immunohistochemistry and biochemical analysis of protein levels were performed on human post-mortem brain tissue. We investigated the presence of cleaved gasdermin D (GSDMD), the pyroptosis effector protein, as well as the NLRP3 inflammasome-forming proteins, in the medial temporal lobe of 23 symptomatic AD, 25 pathologically defined preclinical AD (p-preAD) and 21 non-demented control cases. Cleaved GSDMD was detected in microglia, but also in astrocytes and in few pyramidal neurons in the first sector of the cornu ammonis (CA1) of the hippocampus and the temporal cortex of Brodmann area 36. Only microglia expressed all NLRP3 inflammasome-forming proteins (i.e., ASC, NLRP3, caspase-1). Cleaved GSDMD-positive astrocytes and neurons exhibited caspase-8 and non-canonical inflammasome protein caspase-4, respectively, potentially indicating alternative pathways for GSDMD cleavage. Brains of AD patients exhibited increased numbers of cleaved GSDMD-positive cells. Cleaved GSDMD-positive microglia and astrocytes were found in close proximity to Aß plaques, while cleaved GSDMD-positive neurons were devoid of NFTs. In CA1, NLRP3-positive microglia and cleaved GSDMD-positive neurons were associated with local neuronal loss, indicating a possible contribution of NLRP3 inflammasome and pyroptosis activation to AD-related neurodegeneration. Taken together, our results suggest cell type-specific activation of pyroptosis in AD and extend the current knowledge about the contribution of neuroinflammation to the neurodegenerative process in AD via a direct link to neuron death by pyroptosis.


Subject(s)
Alzheimer Disease , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alzheimer Disease/pathology , Pyroptosis , Microglia/pathology , Amyloid beta-Peptides , Astrocytes/pathology , Neuroinflammatory Diseases , Neurons/pathology
8.
Alzheimers Dement ; 19(4): 1440-1451, 2023 04.
Article in English | MEDLINE | ID: mdl-36170544

ABSTRACT

INTRODUCTION: Imaging studies indicated basal forebrain reduction in primary progressive aphasia (PPA), which might be a candidate marker for cholinergic treatment. Nucleus basalis of Meynert (nbM) neuronal loss has been reported, but a systematic quantitative neuropathological assessment including the three clinical PPA variants is lacking. METHODS: Quantitative assessment of neuronal density and pathology was performed on nbM tissue of 47 cases: 15 PPA, constituting the different clinicopathological phenotypes, 14 Alzheimer's disease (AD), and 18 cognitively normals. RESULTS: Group-wise, reduced nbM neuronal density was restricted to AD. At the individual level, semantic variant PPA with underlying AD neuropathological change (ADNC) had lower neuronal densities, while those with frontotemporal lobar degeneration (FTLD) transactive response DNA binding protein 43 kDa (TDP-43) type C pathology were unaffected. Higher Braak stages and increased numbers of nbM-related pretangles were associated with nbM neuronal loss. DISCUSSION: nbM neuronal loss in PPA is related to ADNC. This study cautions against overinterpreting MRI-based basal forebrain volumes in non-AD PPA as neuronal loss.


Subject(s)
Alzheimer Disease , Aphasia, Primary Progressive , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/pathology , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/pathology , Frontotemporal Lobar Degeneration/pathology , Neurons/metabolism , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/pathology
9.
Alzheimers Res Ther ; 14(1): 138, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151568

ABSTRACT

BACKGROUND: Early detection of individuals at risk for Alzheimer's disease (AD) is highly important. Amyloid accumulation is an early pathological AD event, but the genetic association with known AD risk variants beyond the APOE4 effect is largely unknown. We investigated the association between different AD polygenic risk scores (PRS) and amyloid accumulation in the Flemish Prevent AD Cohort KU Leuven (F-PACK). METHODS: We calculated PRS with and without the APOE region in 90 cognitively healthy F-PACK participants (baseline age 67.8 (52-80) years, 41 APOE4 carriers), with baseline and follow-up amyloid-PET (time interval 6.1 (3.4-10.9) years). Individuals were genotyped using Illumina GSA and imputed. PRS were calculated using three p-value thresholds (pT) for variant inclusion: 5 × 10-8, 1 × 10-5, and 0.1, based on the stage 1 summary statistics from Kunkle et al. (Nat Genet 51:414-30, 2019). Linear regression models determined if these PRS predicted amyloid accumulation. RESULTS: A score based on PRS excluding the APOE region at pT = 5 × 10-8 plus the weighted sum of the two major APOE variants (rs429358 and rs7412) was significantly associated with amyloid accumulation (p = 0.0126). The two major APOE variants were also significantly associated with amyloid accumulation (p = 0.0496). The other PRS were not significant. CONCLUSIONS: Specific PRS are associated with amyloid accumulation in the asymptomatic phase of AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Apolipoprotein E4/genetics , Humans , Risk Factors
10.
Acta Neuropathol Commun ; 10(1): 128, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057624

ABSTRACT

It has become evident that Alzheimer's Disease (AD) is not only linked to its hallmark lesions-amyloid plaques and neurofibrillary tangles (NFTs)-but also to other co-occurring pathologies. This may lead to synergistic effects of the respective cellular and molecular players, resulting in neuronal death. One of these co-pathologies is the accumulation of phosphorylated transactive-response DNA binding protein 43 (pTDP-43) as neuronal cytoplasmic inclusions, currently considered to represent limbic-predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), in up to 70% of symptomatic AD cases. Granulovacuolar degeneration (GVD) is another AD co-pathology, which also contains TDP-43 and other AD-related proteins. Recently, we found that all proteins required for necroptosis execution, a previously defined programmed form of neuronal cell death, are present in GVD, such as the phosphorylated necroptosis executioner mixed-lineage kinase domain-like protein (pMLKL). Accordingly, this protein is a reliable marker for GVD lesions, similar to other known GVD proteins. Importantly, it is not yet known whether the presence of LATE-NC in symptomatic AD cases is associated with necroptosis pathway activation, presumably contributing to neuron loss by cell death execution. In this study, we investigated the impact of LATE-NC on the severity of necroptosis-associated GVD lesions, phosphorylated tau (pTau) pathology and neuronal density. First, we used 230 human post-mortem cases, including 82 controls without AD neuropathological changes (non-ADNC), 81 non-demented cases with ADNC, i.e.: pathologically-defined preclinical AD (p-preAD) and 67 demented cases with ADNC. We found that Braak NFT stage and LATE-NC stage were good predictors for GVD expansion and neuronal loss in the hippocampal CA1 region. Further, we compared the impact of TDP-43 accumulation on hippocampal expression of pMLKL-positive GVD, pTau as well as on neuronal density in a subset of nine non-ADNC controls, ten symptomatic AD cases with (ADTDP+) and eight without LATE-NC (ADTDP-). Here, we observed increased levels of pMLKL-positive, GVD-exhibiting neurons in ADTDP+ cases, compared to ADTDP- and controls, which was accompanied by augmented pTau pathology. Neuronal loss in the CA1 region was increased in ADTDP+ compared to ADTDP- cases. These data suggest that co-morbid LATE-NC in AD impacts not only pTau pathology but also GVD-mediated necroptosis pathway activation, which results in an accelerated neuronal demise. This further highlights the cumulative and synergistic effects of comorbid pathologies leading to neuronal loss in AD. Accordingly, protection against necroptotic neuronal death appears to be a promising therapeutic option for AD and LATE.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , DNA-Binding Proteins/metabolism , Humans , Necroptosis , Nerve Degeneration/pathology , Neurofibrillary Tangles/pathology
11.
Alzheimers Dement ; 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35698882

ABSTRACT

BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.

12.
Eur J Nucl Med Mol Imaging ; 49(11): 3772-3786, 2022 09.
Article in English | MEDLINE | ID: mdl-35522322

ABSTRACT

PURPOSE: End-of-life studies have validated the binary visual reads of 18F-labeled amyloid PET tracers as an accurate tool for the presence or absence of increased neuritic amyloid plaque density. In this study, the performance of a support vector machine (SVM)-based classifier will be tested against pathological ground truths and its performance determined in cognitively healthy older adults. METHODS: We applied SVM with a linear kernel to an 18F-Flutemetamol end-of-life dataset to determine the regions with the highest feature weights in a data-driven manner and to compare between two different pathological ground truths: based on neuritic amyloid plaque density or on amyloid phases, respectively. We also trained and tested classifiers based on the 10% voxels with the highest amplitudes of feature weights for each of the two neuropathological ground truths. Next, we tested the classifiers' diagnostic performance in the asymptomatic Alzheimer's disease (AD) phase, a phase of interest for future drug development, in an independent dataset of cognitively intact older adults, the Flemish Prevent AD Cohort-KU Leuven (F-PACK). A regression analysis was conducted between the Centiloid (CL) value in a composite volume of interest (VOI), as index for amyloid load, and the distance to the hyperplane for each of the two classifiers, based on the two pathological ground truths. A receiver operating characteristic analysis was also performed to determine the CL threshold that optimally discriminates between neuritic amyloid plaque positivity versus negativity, or amyloid phase positivity versus negativity, within F-PACK. RESULTS: The classifiers yielded adequate specificity and sensitivity within the end-of-life dataset (neuritic amyloid plaque density classifier: specificity of 90.2% and sensitivity of 83.7%; amyloid phase classifier: specificity of 98.4% and sensitivity of 84.0%). The regions with the highest feature weights corresponded to precuneus, caudate, anteromedial prefrontal, and also posterior inferior temporal and inferior parietal cortex. In the cognitively normal cohort, the correlation coefficient between CL and distance to the hyperplane was -0.66 for the classifier trained with neuritic amyloid plaque density, and -0.88 for the classifier trained with amyloid phases. This difference was significant. The optimal CL cut-off for discriminating positive versus negative scans was CL = 48-51 for the different classifiers (area under the curve (AUC) = 99.9%), except for the classifier trained with amyloid phases and based on the 10% voxels with highest feature weights. There the cut-off was CL = 26 (AUC = 99.5%), which closely matched the CL threshold for discriminating phases 0-2 from 3-5 based on the end-of-life dataset and the neuropathological ground truth. DISCUSSION: Among a set of neuropathologically validated classifiers trained with end-of-life cases, transfer to a cognitively normal population works best for a classifier trained with amyloid phases and using only voxels with the highest amplitudes of feature weights.


Subject(s)
Alzheimer Disease , Plaque, Amyloid , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid , Aniline Compounds , Benzothiazoles , Death , Humans , Machine Learning , Plaque, Amyloid/diagnostic imaging , Positron-Emission Tomography
13.
Ann Clin Transl Neurol ; 9(5): 734-746, 2022 05.
Article in English | MEDLINE | ID: mdl-35502634

ABSTRACT

OBJECTIVE: Plasma phosphorylated-tau-181 (p-tau181) reliably detects clinical Alzheimer's disease (AD) as well as asymptomatic amyloid-ß (Aß) pathology, but is consistently quantified with assays using antibody AT270, which cross-reacts with p-tau175. This study investigates two novel phospho-specific assays for plasma p-tau181 and p-tau231 in clinical and asymptomatic AD. METHODS: Plasma p-tau species were quantified with Simoa in 44 AD patients, 40 spouse controls and an independent cohort of 151 cognitively unimpaired (CU) elderly who underwent Aß-PET. Simoa plasma Aß42 measurements were available in a CU subset (N = 69). Receiver operating characteristics and Aß-PET associations were used to evaluate biomarker validity. RESULTS: The novel plasma p-tau181 and p-tau231 assays did not show cross-reactivity. Plasma p-tau181 accurately detected clinical AD (area under the curve (AUC) = 0.98, 95% CI 0.95-1.00) as well as asymptomatic Aß pathology (AUC = 0.84, 95% CI 0.76-0.92), while plasma p-tau231 did not (AUC = 0.74, 95% CI 0.63-0.85 and 0.61, 95% CI 0.52-0.71, respectively). Plasma p-tau181, but not p-tau231, detected asymptomatic Aß pathology more accurately than age, sex and APOE combined (AUC = 0.64). In asymptomatic elderly, correlations between plasma p-tau181 and Aß pathology were observed throughout the cerebral cortex (ρ = 0.40, p < 0.0001), with focal associations within AD-vulnerable regions, particularly the precuneus. The plasma Aß42/p-tau181 ratio did not reflect asymptomatic Aß pathology better than p-tau181 alone. INTERPRETATION: The novel plasma p-tau181 assay is an accurate tool to detect clinical as well as asymptomatic AD and provides a phospho-specific alternative to currently employed immunoassays.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Humans , tau Proteins
14.
Alzheimers Dement (N Y) ; 8(1): e12227, 2022.
Article in English | MEDLINE | ID: mdl-35229019

ABSTRACT

INTRODUCTION: The bridging integrator 1(BIN1) rs744373 risk polymorphism has been linked to increased [18F]AV1451 signal in non-demented older adults (ie., mild cognitive impairment [MCI] plus cognitively normal [CN] individuals). However, the association of BIN1 with in vivo tau, amyloid beta (Aß) burden, and cognitive impairment in the asymptomatic stage of Alzheimer's disease (AD) remains unknown. METHODS: The BIN1 effect on [18F]AV1451 binding was evaluated in 59 cognitively normal (CN) participants (39% apolipoprotein E [APOE ε4]) from the Flemish Prevent AD Cohort KU Leuven (F-PACK), as well as in 66 Alzheimer's Disease Neuroimaging Initiative (ADNI) CN participants, using voxelwise and regional statistics. For comparison, 52 MCI patients from ADNI were also studied. RESULTS: Forty-four percent of F-PACK participants were BIN1 rs744373 risk-allele carriers, 21% showed high amyloid burden, and 8% had elevated [18F]AV1451 binding. In ADNI, 53% and 50% of CNs and MCIs, respectively, carried the BIN1 rs744373 risk-allele. Amyloid positivity was present in 23% of CNs and 51% of MCIs, whereas 2% of CNs and 35% of MCIs showed elevated [18F]AV1451 binding. There was no significant effect of BIN1 on voxelwise or regional [18F]AV1451 in F-PACK or ADNI CNs, or in the pooled CN sample. No significant association between BIN1 and [18F]AV1451 was obtained in ADNI MCI patients. However, in the MCI group, numerically higher [18F]AV1451 binding was observed in the BIN1 risk-allele group compared to the BIN1 normal group in regions corresponding to more progressed tau pathology. DISCUSSION: We could not confirm the association between BIN1 rs744373 risk-allele and elevated [18F]AV1451 signal in CN older adults or MCI. Numerically higher [18F]AV1451 binding was observed, however, in the MCI BIN1 risk-allele group, indicating that the previously reported positive effect may be confounded by group. Therefore, when studying how the BIN1 risk polymorphism influences AD pathogenesis, a distinction should be made between asymptomatic, MCI, and dementia stages of AD.

15.
Neurobiol Lang (Camb) ; 3(4): 515-537, 2022.
Article in English | MEDLINE | ID: mdl-37215340

ABSTRACT

Recent mechanistic models argue for a key role of rhythm processing in both speech production and speech perception. Patients with the non-fluent variant (NFV) of primary progressive aphasia (PPA) with apraxia of speech (AOS) represent a specific study population in which this link can be examined. Previously, we observed impaired rhythm processing in NFV with AOS. We hypothesized that a shared neurocomputational mechanism structures auditory input (sound and speech) and output (speech production) in time, a "temporal scaffolding" mechanism. Since considerable white matter damage is observed in NFV, we test here whether white matter changes are related to impaired rhythm processing. Forty-seven participants performed a psychoacoustic test battery: 12 patients with NFV and AOS, 11 patients with the semantic variant of PPA, and 24 cognitively intact age- and education-matched controls. Deformation-based morphometry was used to test whether white matter volume correlated to rhythmic abilities. In 34 participants, we also obtained tract-based metrics of the left Aslant tract, which is typically damaged in patients with NFV. Nine out of 12 patients with NFV displayed impaired rhythmic processing. Left frontal white matter atrophy adjacent to the supplementary motor area (SMA) correlated with poorer rhythmic abilities. The structural integrity of the left Aslant tract also correlated with rhythmic abilities. A colocalized and perhaps shared white matter substrate adjacent to the SMA is associated with impaired rhythmic processing and motor speech impairment. Our results support the existence of a temporal scaffolding mechanism structuring perceptual input and speech output.

16.
Cereb Cortex ; 32(7): 1455-1469, 2022 03 30.
Article in English | MEDLINE | ID: mdl-34467392

ABSTRACT

Visual consciousness is shaped by the interplay between endogenous selection and exogenous capture. If stimulus saliency is aligned with a subject's attentional priorities, endogenous selection will be facilitated. In case of a misalignment, endogenous selection may be compromised as attentional capture is a strong and automatic process. We manipulated task-congruent versus -incongruent saliency in a functional magnetic resonance imaging change-detection task and analyzed brain activity patterns in the cortex surrounding the intraparietal sulcus (IPS) within the Julich-Brain probabilistic cytoarchitectonic mapping reference frame. We predicted that exogenous effects would be seen mainly in the posterior regions of the IPS (hIP4-hIP7-hIP8), whereas a conflict between endogenous and exogenous orienting would elicit activity from more anterior cytoarchitectonic areas (hIP1-hIP2-hIP3). Contrary to our hypothesis, a conflict between endogenous and exogenous orienting had an effect early in the IPS (mainly in hIP7 and hIP8). This is strong evidence for an endogenous component in hIP7/8 responses to salient stimuli beyond effects of attentional bottom-up sweep. Our results suggest that hIP7 and hIP8 are implicated in the individuation of attended locations based on saliency as well as endogenous instructions.


Subject(s)
Attention , Parietal Lobe , Attention/physiology , Brain Mapping/methods , Cerebral Cortex/physiology , Magnetic Resonance Imaging , Parietal Lobe/physiology
17.
Brain ; 144(12): 3756-3768, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34534284

ABSTRACT

Language dysfunction is common in Alzheimer's disease. There is increasing interest in the preclinical or asymptomatic phase of Alzheimer's disease. Here we examined in 35 cognitively intact older adults (age range 52-78 years at baseline, 17 male) in a longitudinal study design the association between accumulation of amyloid over a 5-6-year period, measured using PET, and functional changes in the language network measured over the same time period using task-related functional MRI. In the same participants, we also determined the association between the longitudinal functional MRI changes and a cross-sectional measure of tau load as measured with 18F-AV1451 PET. As predicted, the principal change occurred in posterior temporal cortex. In the cortex surrounding the right superior temporal sulcus, the response amplitude during the associative-semantic versus visuo-perceptual task increased over time as amyloid load accumulated (Pcorrected = 0.008). In a whole-brain voxel-wise analysis, amyloid accumulation was also associated with a decrease in response amplitude in the left inferior frontal sulcus (Pcorrected = 0.009) and the right dorsomedial prefrontal cortex (Pcorrected = 0.005). In cognitively intact older adults, cross-sectional tau load was not associated with longitudinal changes in functional MRI response amplitude. Our findings confirm the central role of the neocortex surrounding the posterior superior temporal sulcus as the area of predilection within the language network in the earliest stages of Alzheimer's disease. Amyloid accumulation has an impact on cognitive brain circuitry in the asymptomatic phase of Alzheimer's disease.


Subject(s)
Aging/pathology , Amyloid beta-Peptides , Language , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology , Aged , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Temporal Lobe/pathology
18.
Alzheimers Res Ther ; 13(1): 84, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879243

ABSTRACT

OBJECTIVE: The primary study objective of this retrospective academic memory clinic-based observational longitudinal study was to investigate the prognostic value of a cerebrospinal fluid (CSF)-based ATN classification for subsequent cognitive decline during the 3 years following lumbar puncture in a clinical, real-life setting. The secondary objective was to investigate the prognostic value of CSF biomarkers as continuous variables. METHODS: Data from 228 patients (median age 67 (47-85) years), who presented at the Neurology Memory Clinic UZ/KU Leuven between September 2011 and December 2016, were included with a follow-up period of up to 36 months. Patients underwent a CSF AD biomarker test for amyloid-beta 1-42 (Aß42), hyperphosphorylated tau (p181-tau) and total tau (t-tau) in the clinical work-up for diagnostic reasons. Patients were divided into ATN classes based on CSF biomarkers: Aß42 for amyloid (A), p181-tau for tau (T), and t-tau as a measure for neurodegeneration (N). Based on retrospective data analysis, cognitive performance was evaluated by Mini Mental State Examination (MMSE) scores every 6 months over a period up to 36 months following the lumbar puncture. The statistical analysis was based on linear mixed-effects modeling (LME). RESULTS: The distribution in the current clinical sample was as follows: A-/T-/N- 32.02%, A+/T-/N- 33.33%, A+/T+/N+ 17.11%, A+/T-/N+ 11.84%, A-/T-/N+ 4.39%, A-/T+/N+ 1.32% (3 cases), with no cases in the A-/T+/N- and A+/T+/N- class. Hence, the latter 3 classes were excluded from further analyses. The change of MMSE relative to A-/T-/N- over a 36-month period was significant in all four ATN classes: A+/T+/N+ = - 4.78 points on the MMSE; A-/T-/N+ = - 4.76; A+/T-/N+ = - 2.83; A+/T-/N- = - 1.96. The earliest significant difference was seen in the A+/T+/N+ class at 12 months after baseline. The effect of ATN class on future cognitive decline was confirmed for a different set of CSF thresholds. All individual baseline CSF biomarkers including the Aß42/t-tau ratio showed a significant correlation with subsequent cognitive decline, with the highest correlation seen for Aß42/t-tau. CONCLUSION: ATN classification based on CSF biomarkers has a statistically significant and clinically relevant prognostic value for the course of cognitive decline in a 3-year period in a clinical practice setting.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Child, Preschool , Cognitive Dysfunction/diagnosis , Disease Progression , Humans , Longitudinal Studies , Peptide Fragments , Prognosis , Retrospective Studies , tau Proteins
19.
Alzheimers Res Ther ; 13(1): 75, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33827690

ABSTRACT

BACKGROUND: We examined in cognitively intact older adults the relative weight of cognitive, genetic, structural and amyloid brain imaging variables for predicting cognitive change over a 4-year time course. METHODS: One hundred-eighty community-recruited cognitively intact older adults (mean age 68 years, range 52-80 years, 81 women) belonging to the Flemish Prevent Alzheimer's Disease Cohort KU Leuven (F-PACK) longitudinal observational cohort underwent a baseline evaluation consisting of detailed cognitive assessment, structural MRI and 18F-flutemetamol PET. At inclusion, subjects were stratified based on Apolipoprotein E (APOE) ε4 and Brain-Derived Neurotrophic Factor (BDNF) val66met polymorphism according to a factorial design. At inclusion, 15% were amyloid-PET positive (Centiloid >23.4). All subjects underwent 2-yearly follow-up of cognitive performance for a 4-year time period. Baseline cognitive scores were analysed using factor analysis. The slope of cognitive change over time was modelled using latent growth curve analysis. Using correlation analysis, hierarchical regression and mediation analysis, we examined the effect of demographic (age, sex, education) and genetic variables, baseline cognition, MRI volumetric (both voxelwise and region-based) as well as amyloid imaging measures on the longitudinal slope of cognitive change. RESULTS: A base model of age and sex explained 18.5% of variance in episodic memory decline. This increased to 41.6% by adding baseline episodic memory scores. Adding amyloid load or volumetric measures explained only a negligible additional amount of variance (increase to 42.2%). A mediation analysis indicated that the effect of age on episodic memory scores was partly direct and partly mediated via hippocampal volume. Amyloid load did not play a significant role as mediator between age, hippocampal volume and episodic memory decline. CONCLUSION: In cognitively intact older adults, the strongest baseline predictor of subsequent episodic memory decline was the baseline episodic memory score. When this score was included, only very limited explanatory power was added by brain volume or amyloid load measures. The data warn against classifications that are purely biomarker-based and highlight the value of baseline cognitive performance levels in predictive models.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Aged, 80 and over , Amyloid beta-Peptides , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Female , Humans , Longitudinal Studies , Middle Aged , Neuropsychological Tests , Positron-Emission Tomography
20.
Alzheimers Res Ther ; 12(1): 162, 2020 12 05.
Article in English | MEDLINE | ID: mdl-33278904

ABSTRACT

BACKGROUND: Blood-based amyloid biomarkers may provide a non-invasive, cost-effective and scalable manner for detecting cerebral amyloidosis in early disease stages. METHODS: In this prospective cross-sectional study, we quantified plasma Aß1-42/Aß1-40 ratios with both routinely available ELISAs and novel SIMOA Amyblood assays, and provided a head-to-head comparison of their performances to detect cerebral amyloidosis in a nondemented elderly cohort (n = 199). Participants were stratified according to amyloid-PET status, and the performance of plasma Aß1-42/Aß1-40 to detect cerebral amyloidosis was assessed using receiver operating characteristic analysis. We additionally investigated the correlations of plasma Aß ratios with amyloid-PET and CSF Alzheimer's disease biomarkers, as well as platform agreement using Passing-Bablok regression and Bland-Altman analysis for both Aß isoforms. RESULTS: ELISA and SIMOA plasma Aß1-42/Aß1-40 detected cerebral amyloidosis with identical accuracy (ELISA: area under curve (AUC) 0.78, 95% CI 0.72-0.84; SIMOA: AUC 0.79, 95% CI 0.73-0.85), and both increased the performance of a basic demographic model including only age and APOE-ε4 genotype (p ≤ 0.02). ELISA and SIMOA had positive predictive values of respectively 41% and 36% in cognitively normal elderly and negative predictive values all exceeding 88%. Plasma Aß1-42/Aß1-40 correlated similarly with amyloid-PET for both platforms (Spearman ρ = - 0.32, p <  0.0001), yet correlations with CSF Aß1-42/t-tau were stronger for ELISA (ρ = 0.41, p = 0.002) than for SIMOA (ρ = 0.29, p = 0.03). Plasma Aß levels demonstrated poor agreement between ELISA and SIMOA with concentrations of both Aß1-42 and Aß1-40 measured by SIMOA consistently underestimating those measured by ELISA. CONCLUSIONS: ELISA and SIMOA demonstrated equivalent performances in detecting cerebral amyloidosis through plasma Aß1-42/Aß1-40, both with high negative predictive values, making them equally suitable non-invasive prescreening tools for clinical trials by reducing the number of necessary PET scans for clinical trial recruitment. TRIAL REGISTRATION: EudraCT 2009-014475-45 (registered on 23 Sept 2009) and EudraCT 2013-004671-12 (registered on 20 May 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-004671-12/BE ).


Subject(s)
Alzheimer Disease , Amyloidosis , Aged , Amyloid beta-Peptides , Amyloidosis/diagnostic imaging , Biomarkers , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Humans , Peptide Fragments , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...