Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 13(3): 1515-26, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24494930

ABSTRACT

Compartment proteomics enable broad characterization of target tissues. We employed a simple fractionation method and filter-aided sample preparation (FASP) to characterize the cytosolic and membrane fractions of white perch ovary tissues by semiquantitative tandem mass spectrometry using label-free quantitation based on normalized spectral counts. FASP depletes both low-molecular-weight and high-molecular-weight substances that could interfere with protein digestion and subsequent peptide separation and detection. Membrane proteins are notoriously difficult to characterize due to their amphipathic nature and association with lipids. The simple fractionation we employed effectively revealed an abundance of proteins from mitochondria and other membrane-bounded organelles. We further demonstrate that support vector machines (SVMs) offer categorical classification of proteomics data superior to that of parametric statistical methods such as analysis of variance (ANOVA). Specifically, SVMs were able to perfectly (100% correct) classify samples as either membrane or cytosolic fraction during cross-validation based on the expression of 242 proteins with the highest ANOVA p-values (i.e., those that were not significant for enrichment in either fraction). The white perch ovary cytosolic and membrane proteomes and transcriptome presented in this study can support future investigations into oogenesis and early embryogenesis of white perch and other members of the genus Morone.


Subject(s)
Bass/metabolism , Fish Proteins/analysis , Membrane Proteins/analysis , Mitochondrial Proteins/analysis , Ovary/chemistry , Support Vector Machine , Animals , Chemical Fractionation , Female , Molecular Sequence Annotation , Ovary/metabolism , Proteomics/methods , Tandem Mass Spectrometry
2.
PLoS One ; 8(12): e82674, 2013.
Article in English | MEDLINE | ID: mdl-24386108

ABSTRACT

BACKGROUND: Transcriptome sequencing analysis is a powerful tool in molecular genetics and evolutionary biology. Here we report the results of de novo 454 sequencing, characterization, and comparison of inflorescence transcriptomes of two closely related dogwood species, Cornus canadensis and C. florida (Cornaceae). Our goals were to build a preliminary source of genome sequence data, and to identify genes potentially expressed differentially between the inflorescence transcriptomes for these important horticultural species. RESULTS: The sequencing of cDNAs from inflorescence buds of C. canadensis (cc) and C. florida (cf), and normalized cDNAs from leaves of C. canadensis resulted in 251799 (ccBud), 96245 (ccLeaf) and 114648 (cfBud) raw reads, respectively. The de novo assembly of the high quality (HQ) reads resulted in 36088, 17802 and 21210 unigenes for ccBud, ccLeaf and cfBud. A reference transcriptome for C. canadensis was built by assembling HQ reads of ccBud and ccLeaf, containing 40884 unigenes. Reference mapping and comparative analyses found 10926 sequences were putatively specific to ccBud, and 6979 putatively specific to cfBud. Putative differentially expressed genes between ccBud and cfBud that are related to flower development and/or stress response were identified among 7718 shared sequences by ccBud and cfBud. Bi-directional BLAST found 87 (41.83% of 208) of Arabidopsis genes related to inflorescence development had putative orthologs in the dogwood transcriptomes. Comparisons of the shared sequences by ccBud and cfBud yielded 65931 high quality SNPs between two species. The twenty unigenes with the most SNPs are listed as potential genetic markers for evolutionary studies. CONCLUSIONS: The data provide an important, although preliminary, information platform for functional genomics and evolutionary developmental biology in Cornus. The study identified putative candidates potentially involved in the genetic regulation of inflorescence evolution and/or disease resistance in dogwoods for future analyses. Results of the study also provide markers useful for dogwood phylogenomic studies.


Subject(s)
Cornus/genetics , Transcriptome , Chromosome Mapping , Cornus/growth & development , DNA, Complementary/chemistry , Flowers/genetics , Flowers/growth & development , Gene Library , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
3.
G3 (Bethesda) ; 2(7): 815-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22870404

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) cause major yield losses to many of the world's crops, but efforts to understand how these pests recognize and interact with their hosts have been hampered by a lack of genetic resources. Starting with progeny of a cross between inbred strains (VW8 and VW9) of Meloidogyne hapla that differed in host range and behavioral traits, we exploited the novel, facultative meiotic parthenogenic reproductive mode of this species to produce a genetic linkage map. Molecular markers were derived from SNPs identified between the sequenced and annotated VW9 genome and de novo sequence of VW8. Genotypes were assessed in 183 F2 lines. The colinearity of the genetic and physical maps supported the veracity of both. Analysis of local crossover intervals revealed that the average recombination rate is exceptionally high compared with that in other metazoans. In addition, F2 lines are largely homozygous for markers flanking crossover points, and thus resemble recombinant inbred lines. We suggest that the unusually high recombination rate may be an adaptation to generate within-population genetic diversity in this organism. This work presents the most comprehensive linkage map of a parasitic nematode to date and, together with genomic and transcript sequence resources, empowers M. hapla as a tractable model. Alongside the molecular map, these progeny lines can be used for analyses of genome organization and the inheritance of phenotypic traits that have key functions in modulating parasitism, behavior, and survival and for the eventual identification of the responsible genes.


Subject(s)
Genetic Linkage , Plants/genetics , Recombination, Genetic , Tylenchoidea/genetics , Amplified Fragment Length Polymorphism Analysis , Animals , Cellulase/classification , Chromosome Mapping , Contig Mapping , Crosses, Genetic , Genetic Variation , Genome, Helminth , Genome, Plant , Genotype , Meiosis , Phylogeny , Plants/parasitology , Polymorphism, Single Nucleotide , Polysaccharide-Lyases/classification
4.
BMC Res Notes ; 5: 111, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22353237

ABSTRACT

BACKGROUND: The striped bass and its relatives (genus Morone) are important fisheries and aquaculture species native to estuaries and rivers of the Atlantic coast and Gulf of Mexico in North America. To open avenues of gene expression research on reproduction and breeding of striped bass, we generated a collection of expressed sequence tags (ESTs) from a complementary DNA (cDNA) library representative of their ovarian transcriptome. RESULTS: Sequences of a total of 230,151 ESTs (51,259,448 bp) were acquired by Roche 454 pyrosequencing of cDNA pooled from ovarian tissues obtained at all stages of oocyte growth, at ovulation (eggs), and during preovulatory atresia. Quality filtering of ESTs allowed assembly of 11,208 high-quality contigs ≥ 100 bp, including 2,984 contigs 500 bp or longer (average length 895 bp). Blastx comparisons revealed 5,482 gene orthologues (E-value < 10-3), of which 4,120 (36.7% of total contigs) were annotated with Gene Ontology terms (E-value < 10-6). There were 5,726 remaining unknown unique sequences (51.1% of total contigs). All of the high-quality EST sequences are available in the National Center for Biotechnology Information (NCBI) Short Read Archive (GenBank: SRX007394). Informative contigs were considered to be abundant if they were assembled from groups of ESTs comprising ≥ 0.15% of the total short read sequences (≥ 345 reads/contig). Approximately 52.5% of these abundant contigs were predicted to have predominant ovary expression through digital differential display in silico comparisons to zebrafish (Danio rerio) UniGene orthologues. Over 1,300 Gene Ontology terms from Biological Process classes of Reproduction, Reproductive process, and Developmental process were assigned to this collection of annotated contigs. CONCLUSIONS: This first large reference sequence database available for the ecologically and economically important temperate basses (genus Morone) provides a foundation for gene expression studies in these species. The predicted predominance of ovary gene expression and assignment of directly relevant Gene Ontology classes suggests a powerful utility of this dataset for analysis of ovarian gene expression related to fundamental questions of oogenesis. Additionally, a high definition Agilent 60-mer oligo ovary 'UniClone' microarray with 8 × 15,000 probe format has been designed based on this striped bass transcriptome (eArray Group: Striper Group, Design ID: 029004).


Subject(s)
Bass/genetics , Gene Expression Regulation, Developmental , Oocytes/metabolism , Oogenesis/genetics , Ovary/metabolism , Transcriptome , Animals , DNA, Complementary/chemistry , DNA, Complementary/genetics , Databases, Genetic , Estuaries , Expressed Sequence Tags , Female , Fisheries , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Oocytes/cytology , Ovary/cytology , Sequence Analysis, DNA , Zebrafish/genetics
5.
Plant J ; 56(5): 840-54, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18665915

ABSTRACT

Due to ease of manipulation, metabolic isotope coding of samples for proteomic analysis is typically performed in cell culture, thus preventing an accurate in vivo quantitative analysis, which is only achievable in intact organisms. To address this issue in plant biology, we developed SILIP (stable isotope labeling in planta) using tomato plants (Solanum lycopersicum cv. Rutgers) as a method that allows soil-grown plants to be efficiently labeled using a 14N/15N isotope coding strategy. After 2 months of growth on 14N- and 15N-enriched nitrogen sources, proteins were extracted from four distinct tomato tissues (roots, stems, leaves and flowers), digested, and analyzed by LC/MS/MS (data-dependent acquisition, DDA) and alternating low- and elevated-energy MS scans (data-independent acquisition, MS(E)). Using a derived relationship to generate a theoretical standard curve, the measured ratio of the M (monoisotopic) and M-1 isotopologues of 70 identified 15N-labeled peptides from 16 different proteins indicated that 15N incorporation was almost 99%, which is in excellent agreement with the 99.3% 15N-enriched nitrate used in the soil-based medium. Values for the various tissues ranged from 98.2 +/- 0.3% 15N incorporation in leaves to 98.8 2 +/- 0.2% in stems, demonstrating uniform labeling throughout the plant. In addition, SILIP is compatible with root-knot nematode (Meloidogyne spp.) development, and thus provides a new quantitative proteomics tool to study both plant and plant-microorganism systems.


Subject(s)
Isotope Labeling/methods , Proteomics/methods , Solanum lycopersicum/metabolism , Chromatography, Liquid , Nitrogen/metabolism , Nitrogen Isotopes/metabolism , Phenotype , Plant Proteins/metabolism , Soil , Tandem Mass Spectrometry
6.
Plant Physiol ; 144(2): 1079-92, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17434994

ABSTRACT

Root-knot nematode (RKN; Meloidogyne spp.) is a major crop pathogen worldwide. Effective resistance exists for a few plant species, including that conditioned by Mi in tomato (Solanum lycopersicum). We interrogated the root transcriptome of the resistant (Mi+) and susceptible (Mi-) cultivars 'Motelle' and 'Moneymaker,' respectively, during a time-course infection by the Mi-susceptible RKN species Meloidogyne incognita and the Mi-resistant species Meloidogyne hapla. In the absence of RKN infection, only a single significantly regulated gene, encoding a glycosyltransferase, was detected. However, RKN infection influenced the expression of broad suites of genes; more than half of the probes on the array identified differential gene regulation between infected and uninfected root tissue at some stage of RKN infection. We discovered 217 genes regulated during the time of RKN infection corresponding to establishment of feeding sites, and 58 genes that exhibited differential regulation in resistant roots compared to uninfected roots, including the glycosyltransferase. Using virus-induced gene silencing to silence the expression of this gene restored susceptibility to M. incognita in 'Motelle,' indicating that this gene is necessary for resistance to RKN. Collectively, our data provide a picture of global gene expression changes in roots during compatible and incompatible associations with RKN, and point to candidates for further investigation.


Subject(s)
Gene Expression Regulation, Plant , Glycosyltransferases/metabolism , Plant Roots/enzymology , Solanum lycopersicum/enzymology , Tylenchoidea/physiology , Animals , Feeding Behavior/physiology , Gene Expression , Gene Expression Profiling , Gene Silencing , Genomics , Host-Parasite Interactions/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/parasitology , Oligonucleotide Array Sequence Analysis , Plant Roots/metabolism , Plant Roots/parasitology , Reproduction/physiology
7.
Plant J ; 38(2): 203-14, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15078325

ABSTRACT

We used the cytokinin-responsive Arabidopsis response regulator (ARR)5 gene promoter fused to a beta-glucuronidase (GUS) reporter gene, and cytokinin oxidase (CKX) genes from Arabidopsis thaliana (AtCKX3) and maize (ZmCKX1) to investigate the roles of cytokinins in lateral root formation and symbiosis in Lotus japonicus. ARR5 expression was undetectable in the dividing initial cells at early stages of lateral root formation, but later we observed high expression in the base of the lateral root primordium. The root tip continues to express ARR5 during subsequent development of the lateral root. These results suggest a dynamic role for cytokinin in lateral root development. We observed ARR5 expression in curled/deformed root hairs, and also in nodule primordia in response to Rhizobial inoculation. This expression declined once the nodule emerged from the parent root. Root penetration and migration of root-knot nematode (RKN) second-stage larvae (L2) did not elevate ARR5 expression, but a high level of expression was induced when L2 reached the differentiating vascular bundle and during early stages of the nematode-plant interaction. ARR5 expression was specifically absent in mature giant cells (GCs), although dividing cells around the GCs continued to express this reporter. The same pattern was observed using a green fluorescent protein (GFP) reporter driven by the ARR5 promoter in tomato. Overexpression of CKX genes rendered the transgenic hairy roots resistant to exogenous application of the cytokinin [N6-(Delta2 isopentenyl) adenine riboside] (iPR). CKX roots have significantly more lateral roots, but fewer nodules and nematode-induced root galls per plant, than control hairy roots.


Subject(s)
Cytokinins/physiology , Lotus/growth & development , Symbiosis/physiology , Animals , Arabidopsis/genetics , Base Sequence , DNA, Plant/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genes, Reporter , Glucuronidase/genetics , Lotus/genetics , Lotus/microbiology , Lotus/parasitology , Oxidoreductases/genetics , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Roots/growth & development , Plants, Genetically Modified , Promoter Regions, Genetic , Rhizobium/physiology , Tylenchoidea/pathogenicity , Tylenchoidea/physiology , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...