Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(11): 113704, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33261460

ABSTRACT

A newly developed instrument comprising a near ambient pressure (NAP) photoemission electron microscope (PEEM) and a tunable deep ultraviolet (DUV) laser source is described. This NAP-PEEM instrument enables dynamic imaging of solid surfaces in gases at pressures up to 1 mbar. A diode laser (976 nm) can illuminate a sample from the backside for in situ heating in gases up to 1200 K in minutes. The DUV laser with a tunable wavelength between 175 nm and 210 nm is perpendicularly incident onto the sample surface for PEEM imaging of a wide spectrum of solids with different surface work functions. Using this setup, we have first demonstrated spatiotemporal oscillation patterns of CO oxidation reaction on Pt(110) from high vacuum to NAPs and gas-induced restructuring of metal nanostructures in millibar gases. The new facility promises important applications in heterogeneous catalysis, electrochemical devices, and other surface processes under nearly working conditions.

2.
Ultramicroscopy ; 200: 105-110, 2019 05.
Article in English | MEDLINE | ID: mdl-30851711

ABSTRACT

Photoemission electron microscopy (PEEM) is a powerful surface technique for dynamic imaging of surface processes while PEEM studies have been performed under ultrahigh vacuum or high vacuum conditions. Here we report on a near ambient pressure PEEM (NAP-PEEM) instrument, which enables high resolution PEEM imaging in near ambient pressure (> 1 mbar) gases over a wide temperature range (150 - 1200 K). Installed with an electron gun near ambient pressure low energy electron microscopy (NAP-LEEM) can be achieved as well. The success of this new NAP-PEEM/LEEM instrument relies on the following key design concepts. First, a two-stage accelerating electric field consisting of a low field region between sample and intermediate electrode ("nozzle") and a high field between nozzle and objective lens. Second, a three-stage differential pumping system allowing a near ambient pressure atmosphere at the sample surface while ultrahigh vacuum maintained in the imaging lens systems. Third, a unique NAP cell with gas inlet/outlet, light illumination, sample cooling/heating, and precise sample positioning. The new technique will have important applications in surface catalysis, thin film growth, and energy conversion devices under nearly realistic working conditions.

3.
Ultramicroscopy ; 174: 89-96, 2017 03.
Article in English | MEDLINE | ID: mdl-28063340

ABSTRACT

We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm.

4.
Ultramicroscopy ; 159 Pt 3: 482-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26165485

ABSTRACT

We are developing a transmission electron microscope that operates at extremely low electron energies, 0-40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage.

5.
J Synchrotron Radiat ; 19(Pt 5): 701-4, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22898948

ABSTRACT

The new instrument for near-ambient-pressure X-ray photoelectron spectroscopy which has been installed at the MAX II ring of the Swedish synchrotron radiation facility MAX IV Laboratory in Lund is presented. The new instrument, which is based on a SPECS PHOIBOS 150 NAP analyser, is the first to feature the use of retractable and exchangeable high-pressure cells. This implies that clean vacuum conditions are retained in the instrument's analysis chamber and that it is possible to swiftly change between near-ambient and ultrahigh-vacuum conditions. In this way the instrument implements a direct link between ultrahigh-vacuum and in situ studies, and the entire pressure range from ultrahigh-vacuum to near-ambient conditions is available to the user. Measurements at pressures up to 10(-5) mbar are carried out in the ultrahigh-vacuum analysis chamber, while measurements at higher pressures are performed in the high-pressure cell. The installation of a mass spectrometer on the exhaust line of the reaction cell offers the users the additional dimension of simultaneous reaction data monitoring. Moreover, the chosen design approach allows the use of dedicated cells for different sample environments, rendering the Swedish ambient-pressure X-ray photoelectron spectroscopy instrument a highly versatile and flexible tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...