Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850571

ABSTRACT

Identifying exercise intensity boundaries has been shown to be important during endurance training for performance enhancement and rehabilitation. Unfortunately, even though surrogate markers show promise when assessed on a group level, substantial deviation from gold standards can be present in each individual. The aim of this study was to evaluate whether combining two surrogate intensity markers improved this agreement. Electrocardiogram (ECG) and gas exchange data were obtained from 21 participants who performed an incremental cycling ramp to exhaustion and evaluated for first (VT1) and second (VT2) ventilatory thresholds, heart rate (HR) variability (HRV), and ECG derived respiratory frequency (EDR). HRV thresholds (HRVT) were based on the non-linear index a1 of a Detrended Fluctuation Analysis (DFA a1) and EDR thresholds (EDRT) upon the second derivative of the sixth-order polynomial of EDR over time. The average of HRVT and EDRT HR was set as the combined threshold (Combo). Mean VT1 was reached at a HR of 141 ± 15, HRVT1 at 152 ± 14 (p < 0.001), EDRT1 at 133 ± 12 (p < 0.001), and Combo1 at 140 ± 13 (p = 0.36) bpm with Pearson's r of 0.83, 0.78, and 0.84, respectively, for comparisons to VT1. A Bland-Altman analysis showed mean biases of 8.3 ± 7.9, -8.3 ± 9.5, and -1.7 ± 8.3 bpm, respectively. A mean VT2 was reached at a HR of 165 ± 13, HRVT2 at 167 ± 10 (p = 0.89), EDRT2 at 164 ± 14 (p = 0.36), and Combo2 at 164 ± 13 (p = 0.59) bpm with Pearson's r of 0.58, 0.95, and 0.94, respectively, for comparisons to VT2. A Bland-Altman analysis showed mean biases of -0.3 ± 8.9, -1.0 ± 4.6, and -0.6 ± 4.6 bpm, respectively. Both the DFA a1 and EDR intensity thresholds based on HR taken individually had moderate agreement to targets derived through gas exchange measurements. By combining both non-invasive approaches, there was improved correlation, reduced bias, and limits of agreement to the respective corresponding HRs at VT1 and VT2.


Subject(s)
Bicycling , Respiratory Rate , Humans , Heart Rate , Biomarkers , Electrocardiography
2.
Eur J Appl Physiol ; 123(2): 299-309, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36269394

ABSTRACT

Studies highlight the usage of non-linear time series analysis of heart rate variability (HRV) using the short-term scaling exponent alpha1 of Detrended Fluctuation Analysis (DFA-alpha1) during exercise to determine aerobic and anaerobic thresholds. The present study aims to further verify this approach in women. Gas exchange and HRV data were collected from 26 female participants with different activity levels. Oxygen uptake (VO2) and heart rate (HR) at first (VT1) and second ventilatory thresholds (VT2) were compared with DFA-alpha1-based thresholds 0.75 (HRVT1) and 0.50 (HRVT2). Results: VO2 at VT1 and VT2 were 25.2 ml/kg/min (± 2.8) and 31.5 ml/kg/min (± 3.6) compared with 26.5 ml/kg/min (± 4.0) and 31.9 ml/kg/min (± 4.5) for HRVT1 and HRVT2, respectively (ICC3,1 = 0.77, 0.84; r = 0.81, 0.86, p < 0.001). The mean HR at VT1 was 147 bpm (± 15.6) and 167 bpm (± 12.7) for VT2, compared with 152 bpm (± 15.5) and 166 bpm (± 13.2) for HRVT1 and HRVT2, respectively (ICC3,1 = 0.87, 0.90; r = 0.87, 0.90, p < 0.001). Bland-Altman analysis for VT1 vs. HRVT1 showed a mean difference of - 1.3 ml/kg/min (± 2.4; LoA: 3.3, - 6.0 ml/kg/min) for VO2 and of - 4.7 bpm (± 7.8; LoA: 10.6, - 20.0 bpm) for HR. VT2 vs. HRVT2 showed a mean difference of - 0.4 ml/kg/min (± 2.3; LoA: 4.1, - 4.9 ml/kg/min) for VO2 and 0.5 bpm (± 5.7; LoA: 11.8, - 10.8 bpm) for HR. DFA-alpha1-based thresholds showed good agreement with traditionally used thresholds and could be used as an alternative approach for marking organismic transition zones for intensity distribution in women.


Subject(s)
Anaerobic Threshold , Oxygen Consumption , Humans , Female , Anaerobic Threshold/physiology , Heart Rate/physiology , Oxygen Consumption/physiology , Exercise Test , Exercise
3.
BMC Sports Sci Med Rehabil ; 14(1): 203, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36457040

ABSTRACT

BACKGROUND: The non-linear index alpha 1 of Detrended Fluctuation Analysis (DFA a1) of heart rate variability, has been shown to be a marker of fatigue during endurance exercise. This report aims to explore its ability to assess the physiological status as a surrogate metric for "readiness to train" while performing simulated warm-up sessions the day after two different exercise sessions. METHODS: 11 triathletes were recruited to determine the first ventilatory threshold (VT1) during a baseline assessment and to perform 10-min of cycling at 90% of VT1 (simulating a warm-up bout) before (PRE) and within 36 h after (POST) light and heavy running exercise. RR intervals were recorded for DFA a1 analysis along with neuromuscular testing to verify the effects of the performed exercise sessions. In addition to common statistical methods, magnitude-based inferences (MBI) were applied to assess the changes in true score and thus also the practical relevance of the magnitude. RESULTS: Rating of perceived exertion for the heavy exercise session showed a significant higher rating as opposed to the light exercise session (p < 0.001, d = 0.89). In regard of MBIs, PRE versus POST comparisons revealed a significant reduced DFA a1 with large effect size after the heavy exercise session (p = 0.001, d = - 1.44) and a 99% chance that this negative change was clinically relevant. CONCLUSIONS: Despite inter-individual differences, DFA a1 offers potential to assess physiological status and guide athletes in their training as an easy-to-apply monitoring procedure during a standardized warm-up. A regular assessment including individual data history and statistical references for identification of response is recommended. Further data are necessary to confirm the results in a larger and more homogeneous population.

4.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36236256

ABSTRACT

Monitoring of the physiologic metric, respiratory frequency (RF), has been shown to be of value in health, disease, and exercise science. Both heart rate (HR) and variability (HRV), as represented by variation in RR interval timing, as well as analysis of ECG waveform variability, have shown potential in its measurement. Validation of RF accuracy using newer consumer hardware and software applications have been sparse. The intent of this report is to assess the precision of the RF derived using Kubios HRV Premium software version 3.5 with the Movesense Medical sensor single-channel ECG (MS ECG) and the Polar H10 (H10) HR monitor. Gas exchange data (GE), RR intervals (H10), and continuous ECG (MS ECG) were recorded from 21 participants performing an incremental cycling ramp to failure. Results showed high correlations between the reference GE and both the H10 (r = 0.85, SEE = 4.2) and MS ECG (r = 0.95, SEE = 2.6). Although median values were statistically different via Wilcoxon testing, adjusted median differences were clinically small for the H10 (RF about 1 breaths/min) and trivial for the MS ECG (RF about 0.1 breaths/min). ECG based measurement with the MS ECG showed reduced bias, limits of agreement (maximal bias, -2.0 breaths/min, maximal LoA, 6.1 to -10.0 breaths/min) compared to the H10 (maximal bias, -3.9 breaths/min, maximal LoA, 8.2 to -16.0 breaths/min). In conclusion, RF derived from the combination of the MS ECG sensor with Kubios HRV Premium software, tracked closely to the reference device through an exercise ramp, illustrates the potential for this system to be of practical usage during endurance exercise.


Subject(s)
Exercise , Respiratory Rate , Electrocardiography , Exercise/physiology , Female , Heart Rate/physiology , Humans , Male , Software
5.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36081005

ABSTRACT

Heart rate variability (HRV) is frequently applied in sport-specific settings. The rising use of freely accessible applications for its recording requires validation processes to ensure accurate data. It is the aim of this study to compare the HRV data obtained by the Polar H10 sensor chest strap device and an electrocardiogram (ECG) with the focus on RR intervals and short-term scaling exponent alpha 1 of Detrended Fluctuation Analysis (DFA a1) as non-linear metric of HRV analysis. A group of 25 participants performed an exhaustive cycling ramp with measurements of HRV with both recording systems. Average time between heartbeats (RR), heart rate (HR) and DFA a1 were recorded before (PRE), during, and after (POST) the exercise test. High correlations were found for the resting conditions (PRE: r = 0.95, rc = 0.95, ICC3,1 = 0.95, POST: r = 0.86, rc = 0.84, ICC3,1 = 0.85) and for the incremental exercise (r > 0.93, rc > 0.93, ICC3,1 > 0.93). While PRE and POST comparisons revealed no differences, significant bias could be found during the exercise test for all variables (p < 0.001). For RR and HR, bias and limits of agreement (LoA) in the Bland−Altman analysis were minimal (RR: bias of 0.7 to 0.4 ms with LoA of 4.3 to −2.8 ms during low intensity and 1.3 to −0.5 ms during high intensity, HR: bias of −0.1 to −0.2 ms with LoA of 0.3 to −0.5 ms during low intensity and 0.4 to −0.7 ms during high intensity). DFA a1 showed wider bias and LoAs (bias of 0.9 to 8.6% with LoA of 11.6 to −9.9% during low intensity and 58.1 to −40.9% during high intensity). Linear HRV measurements derived from the Polar H10 chest strap device show strong agreement and small bias compared with ECG recordings and can be recommended for practitioners. However, with respect to DFA a1, values in the uncorrelated range and during higher exercise intensities tend to elicit higher bias and wider LoA.


Subject(s)
Electrocardiography , Exercise Test , Bicycling/physiology , Electrocardiography/methods , Exercise/physiology , Female , Heart Rate/physiology , Humans , Male
6.
Sensors (Basel) ; 22(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35271179

ABSTRACT

The value of heart rate variability (HRV) in the fields of health, disease, and exercise science has been established through numerous investigations. The typical mobile-based HRV device simply records interbeat intervals, without differentiation between noise or arrythmia as can be done with an electrocardiogram (ECG). The intent of this report is to validate a new single channel ECG device, the Movesense Medical sensor, against a conventional 12 channel ECG. A heterogeneous group of 21 participants performed an incremental cycling ramp to failure with measurements of HRV, before (PRE), during (EX), and after (POST). Results showed excellent correlations between devices for linear indexes with Pearson's r between 0.98 to 1.0 for meanRR, SDNN, RMSSD, and 0.95 to 0.97 for the non-linear index DFA a1 during PRE, EX, and POST. There was no significant difference in device specific meanRR during PRE and POST. Bland-Altman analysis showed high agreement between devices (PRE and POST: meanRR bias of 0.0 and 0.4 ms, LOA of 1.9 to -1.8 ms and 2.3 to -1.5; EX: meanRR bias of 11.2 to 6.0 ms; LOA of 29.8 to -7.4 ms during low intensity exercise and 8.5 to 3.5 ms during high intensity exercise). The Movesense Medical device can be used in lieu of a reference ECG for the calculation of HRV with the potential to differentiate noise from atrial fibrillation and represents a significant advance in both a HR and HRV recording device in a chest belt form factor for lab-based or remote field-application.


Subject(s)
Electrocardiography , Exercise , Bicycling , Cross-Sectional Studies , Electrocardiography/methods , Exercise/physiology , Heart Rate/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...