Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
HGG Adv ; : 100315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845201

ABSTRACT

Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility for prostate cancer (PCa) screening. Using genome-wide summary statistics from 95,768 PCa-free men, we conducted a transcriptome-wide association study (TWAS) to examine impacts of genetically predicted gene expression on PSA. Analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10×10-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61×10-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses identified 155 statistically significantly (p < 0.05/22,249 = 2.25×10-6) genes. Out of 173 unique PSA-associated genes across analyses, we replicated 151 (87.3%) in TWAS of 209,318 PCa-free individuals from the Million Veteran Program. Based on conditional analyses, we found 20 genes (11 single-tissue, nine cross-tissue) that were associated with PSA levels in the discovery TWAS that were not attributable to a lead variant from a genome-wide association study (GWAS). Ten of these 20 genes replicated, and two of the replicated genes had colocalization probability > 0.5: CCNA2 and HIST1H2BN. Six of the 20 identified genes are not known to impact PCa risk. Fine mapping based on whole blood and prostate tissue revealed five protein-coding genes with evidence of causal relationships with PSA levels. Of these five genes, four exhibited evidence of colocalization and one was conditionally independent of previous GWAS findings. These results yield hypotheses that should be further explored to improve understanding of genetic factors underlying PSA levels.

2.
Curr Protoc ; 3(12): e933, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38047658

ABSTRACT

Prostate cancer is one of the most common cancers among men in the United States and a leading cause of cancer-related death in men. Treatment options for patients with advanced prostate cancer include hormone therapies, chemotherapies, radioligand therapies, and immunotherapies. Provenge (sipuleucel-T) is an autologous cancer-vaccine-based immunotherapy approved for men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Administration of sipuleucel-T involves leukapheresis of patient blood to isolate antigen-presenting cells (APCs), including dendritic cells (DCs), and subsequent incubation of isolated APCs with both an antigen, prostatic acid phosphatase (PAP), and granulocyte macrophage-colony stimulating factor (GM-CSF) before their infusion back into the patient. Although sipuleucel-T has been shown to improve overall survival, other meaningful outcomes, such as prostate-specific antigen (PSA) levels and radiographic response, are inconsistent. This lack of robust response may be due to limited ex vivo activation of DCs using current protocols. Earlier studies have shown that many cell types can be activated ex vivo by external forces such as fluid shear stress (FSS). We hypothesize that novel fluid shear stress technologies and methods can be used to improve ex vivo efficacy of prostate cancer DC activation in prostate cancer. Herein, we report a new protocol for activating DCs from patients with prostate cancer using ex vivo fluid shear stress. Ultimately, the goal of these studies is to improve DC activation to expand the efficacy of therapies such as sipuleucel-T. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample collection and DC isolation Basic Protocol 2: Determination and application of fluid shear stress Basic Protocol 3: Flow cytometry analysis of DCs after FSS stimulation.


Subject(s)
Cancer Vaccines , Prostatic Neoplasms , Male , Humans , United States , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Immunotherapy/methods , Cancer Vaccines/therapeutic use , Dendritic Cells/pathology
3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38003302

ABSTRACT

Penile squamous cell carcinoma is a rare disease with very limited data to guide treatment decisions. In particular, there is minimal evidence for effective therapies in the metastatic setting. Here, we present a case of metastatic penile squamous cell carcinoma with response to the Nectin-4 inhibitor enfortumab-vedotin-ejfv (EV). EV was selected due to the evidence of the high expression of Nectin-4 in squamous cell carcinomas, including penile carcinoma. The patient had both radiographic and symptomatic improvement after two cycles of treatment, despite having been treated with multiple prior lines of traditional chemotherapy. This case provides support for the use of antibody-drug conjugates (ADC), including EV, in this disease with few other options in the advanced setting. Further studies examining Nectin-4 and ADCs in penile squamous cell carcinoma should be completed, as high-quality evidence is needed to guide treatment after initial progression for these patients.


Subject(s)
Carcinoma, Squamous Cell , Immunoconjugates , Penile Neoplasms , Urinary Bladder Neoplasms , Humans , Male , Nectins , Penile Neoplasms/drug therapy , Penis , Carcinoma, Squamous Cell/drug therapy
4.
EBioMedicine ; 97: 104838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37865044

ABSTRACT

BACKGROUND: Prostate-specific antigen (PSA) levels are influenced by genetic variation unrelated to prostate cancer risk. Whether a genetic predisposition to a higher PSA level predisposes to a diagnostic work-up for prostate cancer is not known. METHODS: Participants were 3110 men of African and European ancestries ages 45-70, without prostate cancer and with a baseline PSA < 4 ng/mL, undergoing routine clinical PSA screening. The exposure was a polygenic score (PGS) comprising 111 single nucleotide polymorphisms associated with PSA level, but not prostate cancer. We tested whether the PGS was associated with a: 1) PSA value > 4 ng/mL, 2) International Classification of Diseases (ICD) code for an elevated PSA, 3) encounter with a urologist, or 4) prostate biopsy. Multivariable Cox proportional hazards models were adjusted for age and genetic principal components. Analyses were stratified by age (45-59 years, and 60-70 years old). Association estimates are per standard deviation change in the PGS. FINDINGS: The median age was 56.6 years, and 2118 (68%) participants were 45-59 years. The median (IQR) baseline PSA level was 1.0 (0.6-1.7) ng/mL. Among men ages 45-59, the PGS was associated with a PSA > 4 (hazard ratio [HR] = 1.35 [95% CI, 1.17-1.57], p = 4.5 × 10-5), an ICD code for elevated PSA (HR = 1.30 [1.12-1.52], p = 8.0 × 10-4), a urological evaluation (HR = 1.34 [1.14-1.57], p = 4.8 × 10-4), and undergoing a prostate biopsy (HR = 1.35 [1.11-1.64], p = 0.002). Among men ages 60-70, association effect sizes were smaller and not significant. INTERPRETATION: A predisposition toward higher PSA levels was associated with clinical evaluations of an elevated PSA among men ages 45-59 years. FUNDING: National Institutes of Health (NIH).


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Middle Aged , Prostate-Specific Antigen/genetics , Genetic Predisposition to Disease , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Proportional Hazards Models , Biopsy
5.
Nat Med ; 29(6): 1412-1423, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37264206

ABSTRACT

Prostate-specific antigen (PSA) screening for prostate cancer remains controversial because it increases overdiagnosis and overtreatment of clinically insignificant tumors. Accounting for genetic determinants of constitutive, non-cancer-related PSA variation has potential to improve screening utility. In this study, we discovered 128 genome-wide significant associations (P < 5 × 10-8) in a multi-ancestry meta-analysis of 95,768 men and developed a PSA polygenic score (PGSPSA) that explains 9.61% of constitutive PSA variation. We found that, in men of European ancestry, using PGS-adjusted PSA would avoid up to 31% of negative prostate biopsies but also result in 12% fewer biopsies in patients with prostate cancer, mostly with Gleason score <7 tumors. Genetically adjusted PSA was more predictive of aggressive prostate cancer (odds ratio (OR) = 3.44, P = 6.2 × 10-14, area under the curve (AUC) = 0.755) than unadjusted PSA (OR = 3.31, P = 1.1 × 10-12, AUC = 0.738) in 106 cases and 23,667 controls. Compared to a prostate cancer PGS alone (AUC = 0.712), including genetically adjusted PSA improved detection of aggressive disease (AUC = 0.786, P = 7.2 × 10-4). Our findings highlight the potential utility of incorporating PGS for personalized biomarkers in prostate cancer screening.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate-Specific Antigen/genetics , Early Detection of Cancer , Neoplasm Grading , Biopsy
6.
medRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205487

ABSTRACT

Deciphering the genetic basis of prostate-specific antigen (PSA) levels may improve their utility to screen for prostate cancer (PCa). We thus conducted a transcriptome-wide association study (TWAS) of PSA levels using genome-wide summary statistics from 95,768 PCa-free men, the MetaXcan framework, and gene prediction models trained in Genotype-Tissue Expression (GTEx) project data. Tissue-specific analyses identified 41 statistically significant (p < 0.05/12,192 = 4.10e-6) associations in whole blood and 39 statistically significant (p < 0.05/13,844 = 3.61e-6) associations in prostate tissue, with 18 genes associated in both tissues. Cross-tissue analyses that combined associations across 45 tissues identified 155 genes that were statistically significantly (p < 0.05/22,249 = 2.25e-6) associated with PSA levels. Based on conditional analyses that assessed whether TWAS associations were attributable to a lead GWAS variant, we found 20 novel genes (11 single-tissue, 9 cross-tissue) that were associated with PSA levels in the TWAS. Of these novel genes, five showed evidence of colocalization (colocalization probability > 0.5): EXOSC9, CCNA2, HIST1H2BN, RP11-182L21.6, and RP11-327J17.2. Six of the 20 novel genes are not known to impact PCa risk. These findings yield new hypotheses for genetic factors underlying PSA levels that should be further explored toward improving our understanding of PSA biology.

7.
JAMA Intern Med ; 183(4): 386-388, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36877498

ABSTRACT

This retrospective cohort study compares 2 risk calculator systems that compute the probabilities of finding high-grade or any cancer on biopsy results in men undergoing a first prostate biopsy.


Subject(s)
Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Risk Factors
8.
Nat Commun ; 13(1): 6036, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229464

ABSTRACT

Cribriform prostate cancer, found in both invasive cribriform carcinoma (ICC) and intraductal carcinoma (IDC), is an aggressive histological subtype that is associated with progression to lethal disease. To delineate the molecular and cellular underpinnings of ICC/IDC aggressiveness, this study examines paired ICC/IDC and benign prostate surgical samples by single-cell RNA-sequencing, TCR sequencing, and histology. ICC/IDC cancer cells express genes associated with metastasis and targets with potential for therapeutic intervention. Pathway analyses and ligand/receptor status model cellular interactions among ICC/IDC and the tumor microenvironment (TME) including JAG1/NOTCH. The ICC/IDC TME is hallmarked by increased angiogenesis and immunosuppressive fibroblasts (CTHRC1+ASPN+FAP+ENG+) along with fewer T cells, elevated T cell dysfunction, and increased C1QB+TREM2+APOE+-M2 macrophages. These findings support that cancer cell intrinsic pathways and a complex immunosuppressive TME contribute to the aggressive phenotype of ICC/IDC. These data highlight potential therapeutic opportunities to restore immune signaling in patients with ICC/IDC that may afford better outcomes.


Subject(s)
Carcinoma, Intraductal, Noninfiltrating , Prostatic Neoplasms , Apolipoproteins E , Carcinoma, Intraductal, Noninfiltrating/genetics , Extracellular Matrix Proteins , Humans , Ligands , Male , Neoplasm Grading , Prostatic Neoplasms/pathology , RNA , Receptors, Antigen, T-Cell , Single-Cell Analysis , Tumor Microenvironment/genetics
9.
Cancers (Basel) ; 14(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35954493

ABSTRACT

A lower baseline neutrophil-to-eosinophil ratio (NER) has been associated with improved responses to immune checkpoint inhibitors (ICI)-treated metastatic renal cell carcinoma (mRCC). This study investigated the decrease in NER at week 6 after ipilimumab/nivolumab (ipi/nivo) initiation and treatment responses in mRCC. A retrospective study of ipi/nivo-treated mRCC at two US academic cancer centers was conducted. A landmark analysis at week 6 was performed to assess the association between the change in NER and clinical responses (progression-free survival (PFS)/overall survival (OS)). Week 6 NER was modeled as a continuous variable, after log transformation (Ln NER), and a categorical variable by percent change. There were 150 mRCC patients included: 78% had clear cell histology, and 78% were IMDC intermediate/poor risk. In multivariable regression analysis, every decrease of 1 unit of Ln NER at week 6 was associated with improved PFS (adjusted hazard ratio (AHR): 0.78, p-value:0.005) and OS (AHR: 0.67, p-value: 0.002). When NER was modeled by percent change, decreased NER > 50% was associated with improved PFS (AHR: 0.55, p-value: 0.03) and OS (AHR: 0.37, p-value: 0.02). The decrease in week 6 NER was associated with improved PFS/OS in ipi/nivo-treated mRCC. Prospective studies are warranted to validate NER change as a biomarker to predict ICI responses.

10.
J Pathol Clin Res ; 7(3): 271-286, 2021 05.
Article in English | MEDLINE | ID: mdl-33600062

ABSTRACT

Outcomes for men with localized prostate cancer vary widely, with some men effectively managed without treatment on active surveillance, while other men rapidly progress to metastatic disease despite curative-intent therapies. One of the strongest prognostic indicators of outcome is grade groups based on the Gleason grading system. Gleason grade 4 prostate cancer with cribriform morphology is associated with adverse outcomes and can be utilized clinically to improve risk stratification. The underpinnings of disease aggressiveness associated with cribriform architecture are not fully understood. Most studies have focused on genetic and molecular alterations in cribriform tumor cells; however, less is known about the tumor microenvironment in cribriform prostate cancer. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblasts in the tumor microenvironment that impact cancer aggressiveness. The overall goal of this study was to determine if cribriform prostate cancers are associated with a unique repertoire of CAFs. Radical prostatectomy whole-tissue sections were analyzed for the expression of fibroblast markers (ASPN in combination with FAP, THY1, ENG, NT5E, TNC, and PDGFRß) in stroma adjacent to benign glands and in Gleason grade 3, Gleason grade 4 cribriform, and Gleason grade 4 noncribriform prostate cancer by RNAscope®. Halo® Software was used to quantify percent positive stromal cells and expression per positive cell. The fibroblast subtypes enriched in prostate cancer were highly heterogeneous. Both overlapping and distinct populations of low abundant fibroblast subtypes in benign prostate stroma were enriched in Gleason grade 4 prostate cancer with cribriform morphology compared to Gleason grade 4 prostate cancer with noncribriform morphology and Gleason grade 3 prostate cancer. In addition, gene expression was distinctly altered in CAF subtypes adjacent to cribriform prostate cancer. Overall, these studies suggest that cribriform prostate cancer has a unique tumor microenvironment that may distinguish it from other Gleason grade 4 morphologies and lower Gleason grades.


Subject(s)
Biomarkers, Tumor/analysis , Cancer-Associated Fibroblasts/chemistry , Prostatic Neoplasms/chemistry , Biomarkers, Tumor/genetics , Cancer-Associated Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , In Situ Hybridization , Male , Neoplasm Grading , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...