Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 456: 131617, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224711

ABSTRACT

To carry out risk assessments of benzophenone-type UV filters (BPs), fast and accurate analytical methods are crucial to determine and monitor levels in the environment. This study presents an LC-MS/MS method that requires minimal sample preparation and yet can identify 10 different BPs in environmental samples such as surface or wastewater resulting in a LOQ range from 2 to 1060 ng/L. The method suitability was tested through environmental monitoring, which showed that, BP-4 is the most abundant derivative found in the surface waters of Germany, India, South Africa and Vietnam. BP-4 levels correlate with the WWTP effluent fraction of the respective river for selected samples in Germany. Peak values of 171 ng/L for 4-hydroxybenzophenone (4-OH-BP), as measured in Vietnamese surface water, already exceed the PNEC value of 80 ng/L, elevating 4-OH-BP to the status of a new pollutant that needs more frequent monitoring. Moreover, this study reveals that during biodegradation of benzophenone in river water, the transformation product 4-OH-BP is formed which contain structural alerts for estrogenic activity. By using yeast-based reporter gene assays, this study provides bio-equivalents of 9 BPs, 4-OH-BP, 2,3,4-tri-OH-BP, 4-cresol and benzoate and complements the existing structure-activities relationships of BPs and their degradation products.


Subject(s)
Receptors, Androgen , Water Pollutants, Chemical , Humans , Chromatography, Liquid/methods , Water , Tandem Mass Spectrometry/methods , Estrogens/analysis , Saccharomyces cerevisiae , Benzophenones/chemistry , Sunscreening Agents/chemistry , Water Pollutants, Chemical/chemistry
2.
Environ Sci Pollut Res Int ; 29(57): 85802-85814, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35771320

ABSTRACT

Recent studies aiming at a fluorine mass balance analysis in sediments combined the determination of extractable organic fluorine (EOF) with target analysis. They reported high fractions of unidentified organic fluorine (UOF) compounds, as the target analysis covers only a limited number of per- and polyfluoroalkyl substances (PFAS). For this reason, in this study, a comprehensive approach was used combining target analysis with an extended PFAS spectrum, the EOF and a modified total oxidisable precursor (TOP) assay, which includes trifluoroacetic acid, to determine the PFAS contamination in sediments (n=41) and suspended solids (n=1) from water bodies in Northern Germany (Lower Saxony). PFAS are ubiquitous in the sediments (detected in 83% of the samples). Perfluorinated carboxylic acids (PFCAs) were found in 64% of the samples; perfluorinated sulfonic acids (PFSAs) were detected less frequently (21%), with the highest concentration observed for perfluorooctanesulfonic acid (PFOS). Levels of precursors and substitutes were lower. Applying the TOP assay resulted in an increase in PFCAs in 43% of the samples analysed. In most cases, target analysis and the TOP assay could not account for the EOF concentrations measured. However, as the fraction of UOF decreased significantly, the application of the TOP assay in fluorine mass balance analysis proved to be an important tool in characterising the PFAS contamination of riverine sediments.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Fluorine/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/analysis , Sulfonic Acids , Carboxylic Acids/analysis
3.
Sci Total Environ ; 643: 632-639, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29958165

ABSTRACT

Knowledge on the sorption behavior of cationic organic substances in aquatic systems is vital for their risk assessment due to the increasing detection of such chemicals in the hydrosphere. Their sorption behavior is strongly influenced by sorption processes onto mineral surfaces (e.g., oxides, clays). To contribute to the development of prediction tools, the impact of sorbent characteristics on the sorption strength was studied in a highly-idealized model system. In addition to the properties of the solid phase, the concentration of other ions in direct competition for sorption sites and the molecular structure of the sorbate were changed to separate ion exchange and non-ion exchange processes. The study includes in total 120 systematic column experiments using five extensively characterized synthetic oxides (three silica gels, two aluminum oxides), three probe molecules (two structurally related cationic substances, one neutral compound), and four distinctively different NaCl concentrations. The results show that the concentration of OH groups on the sorbent surface is a meaningful descriptor for the observed variations in sorption capacity onto different oxides. Compound-specific linear correlations were obtained, enabling the prediction of sorption coefficients. In addition, a more complex sorption behavior of organic cations compared to uncharged molecules were observed as demonstrated by the sorption results at different electrolyte concentrations. Thus, the study provides an important step towards a better principal mechanistic understanding of organic cation sorption. However, further work using other sorbents including natural ones and other probe molecules is needed to verify the identified relationships within the scope of developing reliable prediction models for cation sorption.

4.
J Colloid Interface Sci ; 484: 229-236, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27619382

ABSTRACT

The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed.

5.
Sci Total Environ ; 524-525: 187-94, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25897727

ABSTRACT

The pH-dependent molecule speciation (charge state) in solution strongly influences the transport of ionizable organic compounds in the aquatic environment. Therefore, the sorption behavior is complex and reliable predictions only based on physico-chemical sorbate, sorbent and solution properties are challenging. A short overview of underlying sorption processes causing retardation during the solute transport in aquifers is completed by a description of approaches for estimating respective sorption coefficients/retardation factors and discussed together with their limitations. Based on these initial considerations, a systematic framework is proposed, which allows the assessment of transport properties of organic molecule species by their chemical nature (neutral, acidic, basic, ampholytic). As a result, the transport properties of many (ionizable) organic molecules of interest can be assessed and even first presumptions for the sorption behavior of new and not yet investigated molecules can be derived.

6.
Water Res ; 74: 110-21, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25723339

ABSTRACT

Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption.


Subject(s)
Groundwater/chemistry , Organic Chemicals/isolation & purification , Pharmaceutical Preparations/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Oxidation-Reduction , Pharmaceutical Preparations/analysis , Soil/chemistry , Wastewater/analysis
7.
Water Res ; 54: 273-83, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24584001

ABSTRACT

Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.


Subject(s)
Inorganic Chemicals/chemistry , Metoprolol/isolation & purification , Silica Gel/chemistry , Water/chemistry , Adsorption , Batch Cell Culture Techniques , Cations , Hydrogen-Ion Concentration , Linear Models , Metoprolol/chemistry , Models, Theoretical , Regression Analysis , Solutions , Surface Properties , Temperature
8.
Chemosphere ; 103: 12-25, 2014 May.
Article in English | MEDLINE | ID: mdl-24412098

ABSTRACT

An increasing number of organic compounds detected today in the aquatic environment are ionizable and, therefore, partially or permanently charged (ionic) under the pH conditions encountered in these systems. For evaluating their environmental behavior, which strongly depends on the charge state, the identification of functional groups together with their correct assignment of the respective acidic or basic dissociation constants (pKa) is essential. Despite the growing concern and increasing awareness for ionizable compounds, contradicting and/or confusing information regarding their acid/base properties can be regularly found in the literature, especially when complex structures are encountered. Therefore, we provide a simplified, general, and comprehensive guideline for the identification of ionizable functional groups in organic compounds combined with the correct assignment of their respective pKa values. Beside the explicit definition of basic terms, several tables with more than 30 of the most frequently encountered ionizable compound classes, including their typical pKa value ranges are the centerpiece of the proposed procedure. The straight forward application of the guideline is successfully shown for several environmentally relevant compounds as example.


Subject(s)
Organic Chemicals/analysis , Water Pollutants, Chemical/chemistry , Guidelines as Topic , Ions/analysis
9.
J Fluoresc ; 24(1): 153-60, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23918598

ABSTRACT

A series of various thienyl derivatives of pyrene were synthesized by Stille cross-coupling procedure. Their structures were characterized by (1)H NMR, (13)C NMR and elemental analysis. The spectroscopic characteristics were investigated by UV-vis absorption and fluorescence spectra. Based on quantum chemical calculations, the energy levels of investigated molecules with respect to the pyrene molecule were also discussed.


Subject(s)
Pyrenes/chemistry , Pyrenes/chemical synthesis , Optical Phenomena , Quantum Theory
10.
Chemosphere ; 90(6): 1945-51, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23159068

ABSTRACT

The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 µg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.


Subject(s)
Adrenergic beta-Antagonists/chemistry , Geologic Sediments/chemistry , Metoprolol/chemistry , Water Pollutants, Chemical/chemistry , Adrenergic beta-Antagonists/analysis , Adsorption , Calcium/chemistry , Cations, Monovalent/analysis , Cations, Monovalent/chemistry , Hydrogen-Ion Concentration , Ion Exchange , Kinetics , Metoprolol/analysis , Models, Chemical , Sodium/chemistry , Water Pollutants, Chemical/analysis
11.
Water Res ; 46(17): 5472-5482, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22884374

ABSTRACT

The influence of cation exchange processes on the transport behavior of the cationic ß-blockers atenolol and metoprolol was investigated by applying saturated laboratory column experiments. Breakthrough curves using natural sediments under different competitive conditions were generated and resulting sorption coefficients were compared. For the cationic species of atenolol (at pH = 8), the existence and dominating role of cation exchange processes were demonstrated by varying calcium concentrations. No effect of atenolol concentration on its retardation was observed within a wide concentration range. The breakthrough curve comparison of atenolol and the more hydrophobic metoprolol under constant conditions showed a significantly stronger retardation for metoprolol than for atenolol. However, additional non-polar interactions cannot explain the observed differences as they are determined to be negligible for both compounds. Due to the dominating role of cation exchange processes for the cationic species on overall sorption, a simple prediction of ß-blocker transport in the subsurface by using K(OC) values derived from log K(OW)-log K(OC) correlations is not feasible.


Subject(s)
Adrenergic beta-Antagonists/chemistry , Geologic Sediments/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Monitoring
12.
Chemosphere ; 87(5): 513-20, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22230726

ABSTRACT

The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained K(OC) data were compared with calculated K(OC) values derived from two different logK(OW)-logK(OC) correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pK(a) in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of K(OC), the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied K(OC) correlations.


Subject(s)
Geologic Sediments/chemistry , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Monitoring , Fresh Water/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Pharmaceutical Preparations/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...