Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Funct Plant Biol ; 512024 04.
Article in English | MEDLINE | ID: mdl-38687848

ABSTRACT

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Subject(s)
Flowers , Pollination , Flowers/genetics , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/physiology , Gene Expression Regulation, Plant , Pollen/genetics
2.
Plant J ; 117(5): 1413-1431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38038980

ABSTRACT

During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. ß-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.


Subject(s)
Malus , Malus/metabolism , Fruit/metabolism , Ethylenes/metabolism , Water/metabolism , Gene Expression Regulation, Plant , Cell Wall/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Front Plant Sci ; 14: 1235963, 2023.
Article in English | MEDLINE | ID: mdl-37818320

ABSTRACT

There have been a considerable number of studies that have successfully sped up the flowering cycle in woody perennial horticultural species. One particularly successful study in apple (Malus domestica) accelerated flowering using a silver birch (Betula pendula) APETALA1/FRUITFULL MADS-box gene BpMADS4, which yielded a good balance of vegetative growth to support subsequent flower and fruit development. In this study, BpMADS4 was constitutively expressed in European pear (Pyrus communis) to establish whether this could be used as a tool in a rapid pear breeding program. Transformed pear lines flowered within 6-18 months after grafting onto a quince (Cydonia oblonga) rootstock. Unlike the spindly habit of early flowering apples, the early flowering pear lines displayed a normal tree-like habit. Like apple, the flower appearance was normal, and the flowers were fertile, producing fruit and seed upon pollination. Seed from these transformed lines were germinated and 50% of the progeny flowered within 3 months of sowing, demonstrating a use for these in a fast breeding program.

4.
Nat Commun ; 13(1): 5528, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130930

ABSTRACT

X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy µs-1 in a time window up to 10 µs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.


Subject(s)
Electrons , Lasers , Immunoglobulins , Proteins/chemistry , Radiography , X-Rays
5.
Plant Physiol Biochem ; 188: 38-46, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35981438

ABSTRACT

Following successful pollination, Dendrobium orchid flowers rapidly undergo senescence. In Dendrobium cv. Khao Chaimongkol, compatible pollination resulted in faster ethylene production and more rapid development of senescence symptoms, such as drooping, epinasty, venation and yellowing, compared with non-pollinated controls or pollination with incompatible pollinia. The DenACS1 and DenACO1 genes in the perianth of florets that had been pollinated with compatible pollinia were expressed more highly than those in non-pollinated open florets. Incompatible pollinia reduced the expression of DenACS1 and DenACO1 genes in the perianth. Transcript levels of the ethylene receptor gene DenERS1 and signaling genes DenEIL1 and DenERF1 showed differential spatial regulation with greater expression in the perianth than in the column plus ovary following compatible pollination. Compatible pollinia increased ethylene production concomitant with premature senescence and the increased expression of the DenACS1 and DenACO1 genes, and suppressed the ethylene receptor gene DenERS1, whereas incompatible pollinia did not stimulate ethylene production nor induce premature senescence but induced higher expression of DenERS1 both in the perianth and in the column plus ovary. These results suggest that the increased ethylene production in open florets pollinated with compatible pollen was partially due to an increase in the expression of DenACS1 and DenACO1 genes. The compatible pollinia induced a negative regulation of DenERS1 which may play an important role in ethylene perception and in modulating ethylene signaling transduction during pollinia-induced flower senescence.


Subject(s)
Dendrobium , Pollination , Dendrobium/genetics , Dendrobium/metabolism , Ethylenes/metabolism , Flowers/physiology , Pollen/metabolism
7.
Plant Biotechnol J ; 20(7): 1285-1297, 2022 07.
Article in English | MEDLINE | ID: mdl-35258172

ABSTRACT

Allele-specific expression (ASE) can lead to phenotypic diversity and evolution. However, the mechanisms regulating ASE are not well understood, particularly in woody perennial plants. In this study, we investigated ASE genes in the apple cultivar 'Royal Gala' (RG). A high quality chromosome-level genome was assembled using a homozygous tetra-haploid RG plant, derived from anther cultures. Using RNA-sequencing (RNA-seq) data from RG flower and fruit tissues, we identified 2091 ASE genes. Compared with the haploid genome of 'Golden Delicious' (GD), a parent of RG, we distinguished the genomic sequences between the two alleles of 817 ASE genes, and further identified allele-specific presence of a transposable element (TE) in the upstream region of 354 ASE genes. These included MYB110a that encodes a transcription factor regulating anthocyanin biosynthesis. Interestingly, another ASE gene, MYB10 also showed an allele-specific TE insertion and was identified using genome data of other apple cultivars. The presence of the TE insertion in both MYB genes was positively associated with ASE and anthocyanin accumulation in apple petals through analysis of 231 apple accessions, and thus underpins apple flower colour evolution. Our study demonstrated the importance of TEs in regulating ASE on a genome-wide scale and presents a novel method for rapid identification of ASE genes and their regulatory elements in plants.


Subject(s)
Malus , Alleles , Anthocyanins , Color , DNA Transposable Elements , Flowers/genetics , Flowers/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Genome, Plant , Malus/metabolism , Plant Proteins/genetics
8.
Hortic Res ; 8(1): 233, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34719690

ABSTRACT

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.

9.
BMC Plant Biol ; 21(1): 411, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34496770

ABSTRACT

BACKGROUND: The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS: A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS: Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Subject(s)
Actinidia/genetics , Ethylenes/biosynthesis , Plant Proteins/genetics , Transcription Factors/genetics , Actinidia/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Lyases/genetics , Lyases/metabolism , Solanum lycopersicum/genetics , Phylogeny , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism
10.
BMC Plant Biol ; 21(1): 334, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34261431

ABSTRACT

BACKGROUND: The skin (exocarp) of fleshy fruit is hugely diverse across species. Most fruit types have a live epidermal skin covered by a layer of cuticle made up of cutin while a few create an outermost layer of dead cells (peridermal layer). RESULTS: In this study we undertook crosses between epidermal and peridermal skinned kiwifruit, and showed that epidermal skin is a semi-dominant trait. Furthermore, backcrossing these epidermal skinned hybrids to a peridermal skinned fruit created a diverse range of phenotypes ranging from epidermal skinned fruit, through fruit with varying degrees of patches of periderm (russeting), to fruit with a complete periderm. Quantitative trait locus (QTL) analysis of this population suggested that periderm formation was associated with four loci. These QTLs were aligned either to ones associated with russet formation on chromosome 19 and 24, or cuticle integrity and coverage located on chromosomes 3, 11 and 24. CONCLUSION: From the segregation of skin type and QTL analysis, it appears that skin development in kiwifruit is controlled by two competing factors, cuticle strength and propensity to russet. A strong cuticle will inhibit russeting while a strong propensity to russet can create a continuous dead skinned periderm.


Subject(s)
Actinidia/genetics , Fruit/genetics , Genes, Plant , Genetic Loci , Plant Development/genetics , Actinidia/growth & development , Crosses, Genetic , Fruit/growth & development , Genotype , Phenotype , Quantitative Trait Loci
11.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-34009255

ABSTRACT

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa "Hayward," is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis "Red5" reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.


Subject(s)
Actinidia , Actinidia/genetics , Fruit/genetics , Genotype , Plant Breeding , Chromosome Mapping
12.
J Synchrotron Radiat ; 28(Pt 3): 987-994, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33950007

ABSTRACT

Single-pulse holographic imaging at XFEL sources with 1012 photons delivered in pulses shorter than 100 fs reveal new quantitative insights into fast phenomena. Here, a timing and synchronization scheme for stroboscopic imaging and quantitative analysis of fast phenomena on time scales (sub-ns) and length-scales (≲100 nm) inaccessible by visible light is reported. A fully electronic delay-and-trigger system has been implemented at the MID station at the European XFEL, and applied to the study of emerging laser-driven cavitation bubbles in water. Synchronization and timing precision have been characterized to be better than 1 ns.

13.
BMC Plant Biol ; 21(1): 121, 2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33639842

ABSTRACT

BACKGROUND: Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS: Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS: This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.


Subject(s)
Actinidia/genetics , Gene Regulatory Networks , Genes, Plant , Transcription Factors/genetics , Actinidia/growth & development , Actinidia/metabolism , Flowers/growth & development , Fruit/growth & development , Gene Expression Profiling , RNA, Plant , RNA-Seq , Web Browser
14.
J Synchrotron Radiat ; 28(Pt 1): 52-63, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399552

ABSTRACT

X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.

15.
Front Plant Sci ; 12: 808138, 2021.
Article in English | MEDLINE | ID: mdl-35154203

ABSTRACT

The ability to quantify the colour of fruit is extremely important for a number of applied fields including plant breeding, postharvest assessment, and consumer quality assessment. Fruit and other plant organs display highly complex colour patterning. This complexity makes it challenging to compare and contrast colours in an accurate and time efficient manner. Multiple methodologies exist that attempt to digitally quantify colour in complex images but these either require a priori knowledge to assign colours to a particular bin, or fit the colours present within segment of the colour space into a single colour value using a thresholding approach. A major drawback of these methodologies is that, through the process of averaging, they tend to synthetically generate values that may not exist within the context of the original image. As such, to date there are no published methodologies that assess colour patterning using a data driven approach. In this study we present a methodology to acquire and process digital images of biological samples that contain complex colour gradients. The CIE (Commission Internationale de l'Eclairage/International Commission on Illumination) ΔE2000 formula was used to determine the perceptually unique colours (PUC) within images of fruit containing complex colour gradients. This process, on average, resulted in a 98% reduction in colour values from the number of unique colours (UC) in the original image. This data driven procedure summarised the colour data values while maintaining a linear relationship with the normalised colour complexity contained in the total image. A weighted ΔE2000 distance metric was used to generate a distance matrix and facilitated clustering of summarised colour data. Clustering showed that our data driven methodology has the ability to group these complex images into their respective binomial families while maintaining the ability to detect subtle colour differences. This methodology was also able to differentiate closely related images. We provide a high quality set of complex biological images that span the visual spectrum that can be used in future colorimetric research to benchmark colourimetric method development.

16.
Front Plant Sci ; 11: 964, 2020.
Article in English | MEDLINE | ID: mdl-32714354

ABSTRACT

Fruit softening is controlled by hormonal and developmental cues, causing an upregulation of cell wall-associated enzymes that break down the complex sugar matrices in the cell wall. The regulation of this process is complex, with different genotypes demonstrating quite different softening patterns, even when they are closely related. Currently, little is known about the relationship between cell wall structure and the rate of fruit softening. To address this question, the softening of two Actinidia chinensis var. chinensis (kiwifruit) genotypes (a fast 'AC-F' and a slow 'AC-S' softening genotype) was examined using a range of compositional, biochemical, structural, and molecular techniques. Throughout softening, the cell wall structure of the two genotypes was fundamentally different at identical firmness stages. In the hemicellulose domain, xyloglucanase enzyme activity was higher in 'AC-F' at the firm unripe stage, a finding supported by differential expression of xyloglucan transglycosylase/hydrolase genes during softening. In the pectin domain, differences in pectin solubilization and location of methyl-esterified homogalacturonan in the cell wall between 'AC-S' and 'AC-F' were shown. Side chain analyses and molecular weight elution profiles of polyuronides and xyloglucans of cell wall extracts revealed fundamental differences between the genotypes, pointing towards a weakening of the structural integrity of cell walls in the fast softening 'AC-F' genotype even at the firm, unripe stage. As a consequence, the polysaccharides in the cell walls of 'AC-F' may be easier to access and hence more susceptible to enzymatic degradation than in 'AC-S', resulting in faster softening. Together these results suggest that the different rates of softening between 'AC-F' and 'AC-S' are not due to changes in enzyme activities alone, but that fundamental differences in the cell wall structure are likely to influence the rates of softening through differential modification and accessibility of specific cell wall polysaccharides during ripening.

17.
Funct Plant Biol ; 47(12): 1019-1031, 2020 11.
Article in English | MEDLINE | ID: mdl-32571472

ABSTRACT

The outer skin layer in any plant is essential in offering a protective barrier against water loss and pathogen attack. Within fleshy fruit, the skin supports internal cell layers and can provide the initial cues in attracting seed-dispersing animals. The skin of a fruit, termed the exocarp, is a key element of consumer preference and a target for many breeding programs. Across fruiting species there is a huge diversity of exocarp types and these range from a simple single living cell layer (epidermis) often covered with a waxy layer, to complex multicellular suberised and dead cell layers (periderm), with various intermediate russet forms in between. Each exocarp can be interspersed with other structures such as hairs or spines. The epidermis has been well characterised and remains pluripotent with the help of the cells immediately under the epidermis. The periderm, in contrast, is the result of secondary meristematic activity, which replaces the epidermal layers, and is not well characterised in fruits. In this review we explore the structure, composition and mechanisms that control the development of a periderm type fruit exocarp. We draw upon literature from non-fleshy fruit species that form periderm tissue, from which a considerable amount of research has been undertaken.


Subject(s)
Fruit , Meristem , Animals , Epidermal Cells , Epidermis , Water
18.
Phytochemistry ; 173: 112297, 2020 May.
Article in English | MEDLINE | ID: mdl-32070800

ABSTRACT

Non-targeted LC-MS metabolomics on fruit of three wild and domesticated apple species (Malus sylvestris, M. sieversii and M. domestica) showed that two crab apple (M. sylvestris) accessions were distinguished by high concentrations of an ascorbic acid glycoside (AAG). This was partly purified, but key NMR signals were masked by inseparable sucrose. Reference samples of 2-O-ß-D-glucopyranosyl L-ascorbic acid and 2-O-ß-D-galactopyranosyl L-ascorbic acid were synthesised, but both coincided with the crab apple AAG on LC-MS. Peracetylation of the crab apple extract allowed both purification and characterisation, and the AAG was proven to be 2-O-ß-D-glucopyranosyl L-ascorbic acid by comparison of 1H NMR, HRMS and HPLC data with synthesised peracetylated ascorbyl glycoside standards. The stability of the natural AA 2-ß-glycoside was similar to synthetic 2-O-α-D-glucopyranosyl L-ascorbic acid, used widely in cosmetic and pharmaceutical products. This discovery in crab apples (Rosaceae) is only the fourth reported occurrence of any ascorbyl glycoside from plants, the others being from Cucurbitaceae, Solanaceae and Brassicaceae. It is hypothesised that AAGs may be more widespread in plants than currently realised.


Subject(s)
Cardiac Glycosides , Malus , Ascorbic Acid , Fruit , Glycosides
19.
J Exp Bot ; 70(21): 6085-6099, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31408160

ABSTRACT

In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-ß-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five ß-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.


Subject(s)
Cell Wall/metabolism , Fruit/genetics , Gene Expression Regulation, Plant , Malus/genetics , Pectins/metabolism , Cell Wall/chemistry , Cell Wall/genetics , Epitopes/metabolism , Fruit/growth & development , Galactans/metabolism , Gene Expression Regulation, Developmental , Malus/growth & development , Molecular Weight , Plant Epidermis/metabolism , Polysaccharides/metabolism , Solubility , Transcriptome/genetics
20.
PLoS One ; 14(5): e0216120, 2019.
Article in English | MEDLINE | ID: mdl-31083658

ABSTRACT

The ETYHLENE RESPONSE FACTOR/APETALA2 (ERF/AP2) transcription factors have been shown to control a wide range of developmental and environmental responses in plants. These include hormonal responses to ethylene and Abscisic Acid (ABA) as well as to cold and drought. In Actinidia chinensis (kiwifruit), ripening is unusual: although it is sometimes classed as a climacteric fruit (ethylene-associated ripening), much of fruit ripening occurs independently from autocatalytic ethylene production. Initiation of ripening appears to be strongly developmentally controlled and modulated by low temperature. In this study, fruit treated with different temperatures showed an increase in soluble sugar accumulation, and a corresponding increase in ß-AMYLASE (BAM) genes (predominantly BAM3.2 and BAM9) with lower temperatures. To investigate the potential role of the AP2/ERF gene family in the control of fruit ripening in kiwifruit this family was investigated further. Using the new genome annotation and further genome sequence analysis we identified 226 ERF-like genes, 10 AP2L/RAV-like genes and 32 AP2-like genes. An RNA-seq screen from kiwifruit of different maturities, and following treatment with ethylene and temperatures between 0 and 16°C, revealed 4%, 26% and 18% of the ERF-like genes were upregulated by maturation, ethylene and cold temperatures, respectively. Focusing on the C-REPEAT/DRE BINDING FACTOR (CBF) cold master regulators, nine potential genes were identified based on sequence similarity. Five of these CBF-like genes were found in a copy number variant (CNV) cluster of six genes on chromosome 14. Expression analysis showed that two homeologous genes (ERF41 and ERF180) increased in abundance with cold and ethylene, while the cluster of CNV CBF-like genes had lost the ability to respond to cold and increased only with ethylene, suggesting an evolutionary progression of function of these genes.


Subject(s)
Actinidia/genetics , DNA Copy Number Variations/genetics , Fruit/genetics , Plant Proteins/genetics , Cold Temperature , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Multigene Family/genetics , Phylogeny , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...