Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 14(15): 3472-5, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24038896

ABSTRACT

To be or not to be chlorinated: When octaethylporphyrin iron(III) chloride (FeOEP-Cl) molecules are sublimated onto Cu(111) surfaces, two different molecular species are observed through scanning tunneling microscopy, showing either a protrusion or a depression at the center. In combination with van der Waals-corrected density functional calculations, our experiments reveal that one species corresponds to FeOEP-Cl molecules with the chlorine atom pointing away from the surface, whereas the other species has been dechlorinated.

2.
Nano Lett ; 13(6): 2717-22, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23672457

ABSTRACT

The electronic structure at the surface of Bi(111) enables us to study the effect of defects scattering into multiple channels. By performing scanning tunneling spectroscopy near step edges, we analyze the resulting oscillations in the local density of electronic states (LDOS) as function of position. At a given energy, forward and backward scattering not only occur simultaneously but may contribute to the same scattering vector Δk. If the scattering phase of both processes differs by π and the amplitudes are almost equal, the oscillations cancel out. A sharp dip in the magnitude of the Fourier transform of the LDOS marks the crossover between forward and backward scattering channels.

3.
Nat Mater ; 12(3): 223-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23263642

ABSTRACT

Although noise is observed in many experiments, it is rarely used as a source of information. However, valuable information can be extracted from noisy signals. The motion of particles on a surface induced, for example, by thermal activation or by the interaction with the tip of a scanning tunnelling microscope may lead to fluctuations or switching of the tunnelling current. The analysis of these processes gives insight into dynamics on a single atomic or molecular level. Unfortunately, scanning tunnelling microscopy (STM) is not a useful tool to study dynamics in detail, as it is an intrinsically slow technique. Here, we show that this problem can be solved by providing a full real-time characterization of random telegraph noise in the current signal. The hopping rate, the noise amplitude and the relative occupation of the involved states are measured as a function of the tunnelling parameters, providing spatially resolved maps. In contrast to standard STM, our technique gives access to transiently populated states revealing an electron-driven hindered rotation between the equilibrium and two metastable positions of an individually adsorbed molecule. The new approach yields a complete characterization of copper phthalocyanine molecules on Cu(111), ranging from dynamical processes on surfaces to the underlying electronic structure on the single-molecule level.

SELECTION OF CITATIONS
SEARCH DETAIL
...