Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 10(12): 3282-3295, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35583519

ABSTRACT

Introduction: Visual prostheses, i.e. epiretinal stimulating arrays, are a promising therapy in treating retinal dystrophies and degenerations. In the wake of a new generation of devices, an innovative method for epiretinal fixation of stimulator arrays is required. We present the development of tailor-made bioadhesive peptides (peptesives) for fixating epiretinal stimulating arrays omitting the use of traumatic retinal tacks. Materials and methods: Binding motifs on the stimulating array (poly[chloro-p-xylylene] (Parylene C)) and in the extracellular matrix of the retinal surface (collagens I and IV, laminin, fibronectin) were identified. The anchor peptides cecropin A (CecA), KH1, KH2 (author's initials) and osteopontin (OPN) were genetically fused to reporter proteins to assess their binding behavior to coated microtiter plates via fluorescence-based assays. Domain Z (DZ) of staphylococcal protein A was used as a separator to generate a bioadhesive peptide. Following ISO 10993 "biological evaluation of medical materials", direct and non-direct cytotoxicity testing (L-929 and R28 retinal progenitor cells) was performed. Lastly, the fixating capabilities of the peptesives were tested in proof-of-principle experiments. Results: The generation of the bioadhesive peptide required evaluation of the N- and C-anchoring of investigated APs. The YmPh-CecA construct showed the highest activity on Parylene C in comparison with the wildtype phytase without the anchor peptide. eGFP-OPN was binding to all four investigated ECM proteins (collagen I, laminin > collagen IV, fibronectin). The strongest binding to collagen I was observed for eGFP-KH1, while the strongest binding to fibronectin was observed for eGFP-KH2. The selectivity of binding was checked by incubating eGFP-CecA and eGFP-OPN on ECM proteins and on Parylene C, respectively. Direct and non-direct cytotoxicity testing of the peptide cecropin-A-DZ-OPN using L-929 and R28 cells showed good biocompatibility properties. Proof-of-concept experiments in post-mortem rabbit eyes suggested an increased adhesion of CecA-DZ-OPN-coated stimulating arrays. Conclusion: This is the first study to prove the applicability and biocompatibility of peptesives for the fixation of macroscopic objects.


Subject(s)
Fibronectins , Visual Prosthesis , Animals , Cell Adhesion , Collagen/metabolism , Extracellular Matrix Proteins , Fibronectins/metabolism , Laminin/metabolism , Rabbits
2.
Front Neurosci ; 16: 831392, 2022.
Article in English | MEDLINE | ID: mdl-35177963

ABSTRACT

Glaucoma is a heterogeneous eye disease causing atrophy of the optic nerve head (ONH). The optic nerve is formed by the axons of the retinal ganglion cells (RGCs) that transmit visual input to the brain. The progressive RGC loss during glaucoma leads to irreversible vision loss. An elevated intraocular pressure (IOP) is described as main risk factor in glaucoma. In this study, a multielectrode array (MEA)-based ex vivo glaucoma acute model was established and the effects of hydrostatic pressure (10, 30, 60, and 90 mmHg) on the functionality and survival of adult male and female wild-type mouse (C57BL/6) retinae were investigated. Spontaneous activity, response rate to electrical and light stimulation, and bursting behavior of RGCs was analyzed prior, during, and after pressure stress. No pressure related effects on spontaneous firing and on the response rate of the RGCs were observed. Even a high pressure level (90 mmHg for 2 h) did not disturb the RGC functionality. However, the cells' bursting behavior significantly changed under 90 mmHg. The number of spikes in bursts doubled during pressure application and stayed on a high level after pressure stress. Addition of the amino sulfonic acid taurine (1 mM) showed a counteracting effect. OFF ganglion cells did not reveal an increase in bursts under pressure stress. Live/dead staining after pressure application showed no significant changes in RGC survival. The findings of our ex vivo model suggest that RGCs are tolerant toward high, short-time pressure stress.

3.
Biomed Eng Online ; 20(1): 102, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34641889

ABSTRACT

BACKGROUND: Retinal degenerative diseases, e.g., retinitis pigmentosa, cause a severe decline of the visual function up to blindness. Treatment still remains difficult; however, implantation of retinal prostheses can help restoring vision. In this study, the biocompatibility and surgical feasibility of a newly developed epiretinal stimulator (OPTO-EPIRET) was investigated. The previously developed implant was extended by an integrated circuit-based optical capturing, which will enable the immediate conversion of the visual field into stimulation patterns to stimulate retinal ganglion cells. RESULTS: The biocompatibility of the OPTO-EPIRET was investigated in vitro using the two different cell lines L-929 and R28. Direct and indirect contact were analyzed in terms of cell proliferation, cell viability, and gene expression. The surgical feasibility was initially tested by implanting the OPTO-EPIRET in cadaveric rabbit eyes. Afterwards, inactive devices were implanted in six rabbits for feasibility and biocompatibility testings in vivo. In follow-up controls (1-12 weeks post-surgery), the eyes were examined using fundoscopy and optical coherence tomography. After finalization, histological examination was performed to analyze the retinal structure. Regarding the in vitro biocompatibility, no significant influence on cell viability was detected (L929: < 1.3% dead cells; R-28: < 0.8% dead cells). The surgery, which comprised phacoemulsification, vitrectomy, and implantation of the OPTO-EPIRET through a 9-10 mm corneal incision, was successfully established. The implant was fixated with a retinal tack. Vitreal hemorrhage or retinal tearing occurred as main adverse effects. Transitional corneal edema caused difficulties in post-surgical imaging. CONCLUSIONS: The OPTO-EPIRET stimulator showed a good biocompatibility profile in vitro. Furthermore, the implantation surgery was shown to be feasible. However, further design optimization steps are necessary to avoid intra- and postoperative complications. Overall, the OPTO-EPIRET will allow for a wide visual field and good visual acuity due to a high density of electrodes in the central retina.


Subject(s)
Retinitis Pigmentosa , Visual Prosthesis , Animals , Electrodes, Implanted , Prosthesis Implantation , Rabbits , Retina , Retinitis Pigmentosa/surgery
4.
J Neurosci Res ; 99(9): 2172-2187, 2021 09.
Article in English | MEDLINE | ID: mdl-34110645

ABSTRACT

Several eye diseases, for example, retinal artery occlusion, diabetic retinopathy, and glaucoma, are associated with retinal hypoxia. The lack of oxygen in the retina, especially in retinal ganglion cells (RGCs), causes cell damage up to cell degeneration and leads to blindness. Using multielectrode array recordings, an ex vivo hypoxia acute model was established to analyze the electrical activity of murine wild-type retinae under hypoxic stress conditions. Hypoxia was induced by exchanging the perfusion with oxygen-saturated medium by nitrogen-saturated medium. Hypoxic periods of 0 min (control) up to 60 min were tested on the retinae of adult female C57BL/6J mice. The electrical RGC activity vanished during hypoxia, but conditionally returned after the reestablishment of conventional test conditions. With increasing duration of hypoxia, the returning RGC activity decreased. After a hypoxic period of 30 min and a subsequent recovery time of 30 min, 59.43 ± 11.35% of the initially active channels showed a restored RGC activity. The survival rate of retinal cells after hypoxic stress was analyzed by a live/dead staining assay using two-photon laser scanning microscopy. For detailed information about molecular changes caused by hypoxia, a microarray gene expression analysis was performed. Furthermore, the effect of 2-aminoethanesulfonic acid (taurine, 1 mM) on retinae under hypoxic stress was tested. Treatment with taurine resulted in an increase in the RGC response rate after hypoxia and also increased the survival rate of retinal cells under hypoxic stress, confirming its potential as promising candidate for neuroprotective therapies of eye diseases.


Subject(s)
Action Potentials/physiology , Cell Hypoxia/physiology , Retina/physiology , Animals , Electrodes , Female , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Retinal Ganglion Cells/physiology
5.
Cereb Cortex ; 31(1): 32-47, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32829414

ABSTRACT

GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.


Subject(s)
Interneurons/physiology , Nerve Net/cytology , Nerve Net/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Action Potentials , Animals , Axons/physiology , Cell Membrane/physiology , Electrophysiological Phenomena , GABAergic Neurons/physiology , Image Processing, Computer-Assisted , Male , Patch-Clamp Techniques , Rats , Rats, Wistar , White Matter/cytology
6.
Invest Ophthalmol Vis Sci ; 61(13): 37, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33252632

ABSTRACT

Purpose: In RP, photoreceptors degenerate. Retinal prostheses are considered a suitable strategy to restore vision. In animal models of RP, a pathologic rhythmic activity seems to compromise the efficiency of retinal ganglion cell stimulation by an electrical prosthesis. We, therefore, strove to eliminate this pathologic activity. Methods: Electrophysiologic recordings of local field potentials and spike activity of retinal ganglion cells were obtained in vitro from retinae of wild-type and rd10 mice using multielectrode arrays. Retinae were stimulated electrically. Results: The efficiency of electrical stimulation was lower in rd10 retina than in wild-type retina and this was highly correlated with the presence of oscillations in retinal activity. Glycine and GABA, as well as the benzodiazepines diazepam, lorazepam, and flunitrazepam, abolished retinal oscillations and, most important, increased the efficiency of electrical stimulation to values similar to those in wild-type retina. Conclusions: Treatment of patients with these benzodiazepines may offer a way to improve the performance of retinal implants in cases with poor implant proficiency. This study may open the way to a therapy that supports electrical stimulation by prostheses with pharmacologic treatment.


Subject(s)
Disease Models, Animal , Electric Stimulation Therapy , Retina/physiopathology , Retinal Ganglion Cells/drug effects , Retinitis Pigmentosa/physiopathology , Action Potentials/drug effects , Animals , Benzodiazepines/pharmacology , Female , Glycine/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retinal Ganglion Cells/physiology , gamma-Aminobutyric Acid/pharmacology
7.
J Neural Eng ; 16(6): 066031, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31480027

ABSTRACT

OBJECTIVE: The restoration of vision in blind patients suffering from degenerative retinal diseases like retinitis pigmentosa may be obtained by local electrical stimulation with retinal implants. In this study, a very large electrode array for retinal stimulation (VLARS) was introduced and tested regarding its safety in implantation and biocompatibility. Further, the array's stimulation capabilities were tested in an acute setting. APPROACH: The polyimide-based implants have a diameter of 12 mm, cover approximately 110 mm2 of the retinal surface and carrying 250 iridium oxide coated gold electrodes. The implantation surgery was established in cadaveric porcine eyes. To analyze biocompatibility, ten rabbits were implanted with the VLARS device, and observed for 12 weeks using slit lamp examination, fundus photography, optical coherence tomography (OCT) as well as ultrasound imaging. After enucleation, histological examinations were performed. In acute stimulation experiments, electrodes recorded cortical field potentials upon retinal stimulation in the visual cortex in rabbits. MAIN RESULTS: Implantation studies in rabbits showed that the implantation surgery is safe but difficult. Retinal detachment induced by retinal tears was observed in five animals in varying severity. In five cases, corneal edema reduced the quality of the follow-up examinations. Findings in OCT-imaging and funduscopy suggested that peripheral fixation was insufficient in various animals. Results of the acute stimulation demonstrated the array's ability to elicit cortical responses. SIGNIFICANCE: Overall, it was possible to implant very large epiretinal arrays. On retinal stimulation with the VLARS responses in the visual cortex were recorded. The VLARS device offers the opportunity to restore a much larger field of visual perception when compared to current available retinal implants.


Subject(s)
Biocompatible Materials/administration & dosage , Electrodes, Implanted , Prosthesis Implantation/methods , Retina/physiology , Visual Cortex/physiology , Animals , Follow-Up Studies , Microelectrodes , Prosthesis Implantation/instrumentation , Rabbits , Swine
8.
JAMA Ophthalmol ; 137(8): 896-902, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31145440

ABSTRACT

IMPORTANCE: The Argus II Retinal Prosthesis System is indicated for patients with vision loss due to severe to profound outer retinal degeneration, a group with few treatment options. OBJECTIVES: To collect postapproval safety and visual function data for the Argus II. DESIGN, SETTING, AND PARTICIPANTS: Multicenter, postapproval clinical trial conducted at 9 sites in Germany and Italy. Data were collected from December 2, 2011, to September 30, 2017, and patients were followed-up for 12 months or longer. Patients were 25 years or older with severe to profound outer retinal degeneration, some residual light perception or the ability of the retina to respond to electrical stimulation, and a history of useful form vision and were already planning to undergo Argus II implantation. MAIN OUTCOMES AND MEASURES: The primary end point of this study was the nature and rate of adverse events. Secondary end points included 3 visual function tests: square localization (SL), direction of motion, and grating visual acuity (GVA). RESULTS: Forty-seven patients were followed for 12 months or longer after implant. Mean (SD) age was 56 (12) years, 37 (79%) had retinitis pigmentosa, and 27 (57%) were male. Through the first 12 months postimplantation, 23 patients (49%) experienced 51 nonserious adverse events and 12 (26%) experienced 13 serious adverse events (SAEs), 9 of which were judged to be related to the Argus II, and 4 of which were judged to be related to the procedure. The most common SAE was conjunctival erosion, reported in 4 patients. No significance testing was done for group analysis for the SL or direction-of-motion tests. When averaged across the group, patients' accuracy on the SL test, but not on the direction-of-motion test, appeared better when the Argus II was on than when it was switched off. For GVA, more patients at each point in time achieved the 2.9 GVA cutoff in the implanted eye when the Argus II was on compared with it switched off. CONCLUSIONS AND RELEVANCE: Safety and visual function outcomes in this clinical practice setting cohort of patients with Argus II implants were consistent with previously reported results. Longer follow-up of these patients and data from additional patients are required to better outline the risks and benefits of this approach to addressing blindness secondary to severe-to-profound outer retinal degeneration. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01490827.

SELECTION OF CITATIONS
SEARCH DETAIL
...