Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731892

ABSTRACT

With the advent of immunotherapeutics, a new era in the combat against cancer has begun. Particularly promising are neo-epitope-targeted therapies as the expression of neo-antigens is tumor-specific. In turn, this allows the selective targeting and killing of cancer cells whilst healthy cells remain largely unaffected. So far, many advances have been made in the development of treatment options which are tailored to the individual neo-epitope repertoire. The next big step is the achievement of efficacious "off-the-shelf" immunotherapies. For this, shared neo-epitopes propose an optimal target. Given the tremendous potential, a thorough understanding of the underlying mechanisms which lead to the formation of neo-antigens is of fundamental importance. Here, we review the various processes which result in the formation of neo-epitopes. Broadly, the origin of neo-epitopes can be categorized into three groups: canonical, noncanonical, and viral neo-epitopes. For the canonical neo-antigens that arise in direct consequence of somatic mutations, we summarize past and recent findings. Beyond that, our main focus is put on the discussion of noncanonical and viral neo-epitopes as we believe that targeting those provides an encouraging perspective to shape the future of cancer immunotherapeutics.


Subject(s)
Antigens, Neoplasm , Epitopes , Immunotherapy , Neoplasms , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Immunotherapy/methods , Epitopes/immunology , Epitopes/genetics , Exome/genetics , Mutation
2.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724462

ABSTRACT

BACKGROUND: Tumor-associated antigens and their derived peptides constitute an opportunity to design off-the-shelf mainline or adjuvant anti-cancer immunotherapies for a broad array of patients. A performant and rational antigen selection pipeline would lay the foundation for immunotherapy trials with the potential to enhance treatment, tremendously benefiting patients suffering from rare, understudied cancers. METHODS: We present an experimentally validated, data-driven computational pipeline that selects and ranks antigens in a multipronged approach. In addition to minimizing the risk of immune-related adverse events by selecting antigens based on their expression profile in tumor biopsies and healthy tissues, we incorporated a network analysis-derived antigen indispensability index based on computational modeling results, and candidate immunogenicity predictions from a machine learning ensemble model relying on peptide physicochemical characteristics. RESULTS: In a model study of uveal melanoma, Human Leukocyte Antigen (HLA) docking simulations and experimental quantification of the peptide-major histocompatibility complex binding affinities confirmed that our approach discriminates between high-binding and low-binding affinity peptides with a performance similar to that of established methodologies. Blinded validation experiments with autologous T-cells yielded peptide stimulation-induced interferon-γ secretion and cytotoxic activity despite high interdonor variability. Dissecting the score contribution of the tested antigens revealed that peptides with the potential to induce cytotoxicity but unsuitable due to potential tissue damage or instability of expression were properly discarded by the computational pipeline. CONCLUSIONS: In this study, we demonstrate the feasibility of the de novo computational selection of antigens with the capacity to induce an anti-tumor immune response and a predicted low risk of tissue damage. On translation to the clinic, our pipeline supports fast turn-around validation, for example, for adoptive T-cell transfer preparations, in both generalized and personalized antigen-directed immunotherapy settings.


Subject(s)
Antigens, Neoplasm , Immunotherapy , Humans , Antigens, Neoplasm/immunology , Immunotherapy/methods , Gene Regulatory Networks
3.
Front Immunol ; 14: 1223695, 2023.
Article in English | MEDLINE | ID: mdl-37662937

ABSTRACT

Background: Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region. Superparamagnetic iron oxide nanoparticles (SPIONs) can make cells magnetically controllable for the site-specific enrichment. Methods: In this study, we investigated the influence of SPION-loading on primary human T cells for the magnetically targeted adoptive T cell therapy. For this, we analyzed cellular mechanics and the T cell response after stimulation via an exogenous T cell receptor (TCR) specific for the melanoma antigen MelanA or the endogenous TCR specific for the cytomegalovirus antigen pp65 and compared them to T cells that had not received SPIONs. Results: SPION-loading of human T cells showed no influence on cellular mechanics, therefore retaining their ability to deform to external pressure. Additionally, SPION-loading did not impair the T cell proliferation, expression of activation markers, cytokine secretion, and tumor cell killing after antigen-specific activation mediated by the TCR. Conclusion: In summary, we demonstrated that SPION-loading of T cells did not affect cellular mechanics or the functionality of the endogenous or an exogenous TCR, which allows future approaches using SPIONs for the magnetically enrichment of T cells in solid tumors.


Subject(s)
Leukemia , Multiple Myeloma , Humans , Receptors, Antigen, T-Cell , Lymphocyte Activation , Magnetic Iron Oxide Nanoparticles , Tumor Microenvironment
4.
Front Immunol ; 14: 1248867, 2023.
Article in English | MEDLINE | ID: mdl-37736099

ABSTRACT

The treatment of cancer was revolutionized within the last two decades by utilizing the mechanism of the immune system against malignant tissue in so-called cancer immunotherapy. Two main developments boosted cancer immunotherapy: 1) the use of checkpoint inhibitors, which are characterized by a relatively high response rate mainly in solid tumors; however, at the cost of serious side effects, and 2) the use of chimeric antigen receptor (CAR)-T cells, which were shown to be very efficient in the treatment of hematologic malignancies, but failed to show high clinical effectiveness in solid tumors until now. In addition, active immunization against individual tumors is emerging, and the first products have reached clinical approval. These new treatment options are very cost-intensive and are not financially compensated by health insurance in many countries. Hence, strategies must be developed to make cancer immunotherapy affordable and to improve the cost-benefit ratio. In this review, we discuss the following strategies: 1) to leverage the antigenicity of "cold tumors" with affordable reagents, 2) to use microbiome-based products as markers or therapeutics, 3) to apply measures that make adoptive cell therapy (ACT) cheaper, e.g., the use of off-the-shelf products, 4) to use immunotherapies that offer cheaper platforms, such as RNA- or peptide-based vaccines and vaccines that use shared or common antigens instead of highly personal antigens, 5) to use a small set of predictive biomarkers instead of the "sequence everything" approach, and 6) to explore affordable immunohistochemistry markers that may direct individual therapies.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hematologic Neoplasms , Humans , Immunotherapy , Cell- and Tissue-Based Therapy , Insurance, Health
5.
Proc Natl Acad Sci U S A ; 120(33): e2300343120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37566635

ABSTRACT

Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1- and XCR1+ cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1+ cDC1 display a preactivated phenotype compared to XCR1- cDC1. Upon stimulation, XCR1+ cDC1, but not XCR1- cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1+ cDC1. Moreover, XCR1+ cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1- cDC1 developed into XCR1+ cDC1. After acquisition of XCR1 expression, XCR1- cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1- cDC1 seem to represent a late immediate precursor of cDC1.


Subject(s)
Dendritic Cells , Killer Cells, Natural , Humans , Cell Differentiation , Cytokines
6.
Clin Nutr ; 42(5): 661-669, 2023 05.
Article in English | MEDLINE | ID: mdl-36940600

ABSTRACT

BACKGROUND: Coffee is among the most consumed beverages worldwide. Coffee consumption has been associated with lower risk of type 2 diabetes mellitus (T2D), but underlying mechanisms are not well understood. We aimed to study the role of classic and novel-T2D biomarkers with anti- or pro-inflammatory activity in the association between habitual coffee intake and T2D risk. Furthermore, we studied differences by coffee types and smoking status in this association. METHODS: Using two large population-based cohorts, the UK-Biobank (UKB; n = 145,368) and the Rotterdam Study (RS; n = 7111), we investigated associations of habitual coffee consumption with incident T2D and repeated measures of insulin resistance (HOMA-IR), using Cox proportional hazards and mixed effect models, respectively. Additionally, we studied associations between coffee and subclinical inflammation biomarkers including C-reactive protein (CRP) and IL-13, and adipokines, such as adiponectin and leptin, using linear regression models. Next, we performed formal causal mediation analyses to investigate the role of coffee-associated biomarkers in the association of coffee with T2D. Finally, we evaluated effect modification by coffee type and smoking. All models were adjusted for sociodemographic, lifestyle and health-related factors. RESULTS: During a median follow-up of 13.9 (RS) and 7.4 (UKB) years, 843 and 2290 incident T2D cases occurred, respectively. A 1 cup/day increase in coffee consumption was associated with 4% lower T2D risk (RS, HR = 0.96 [95%CI 0.92; 0.99], p = 0.045; UKB, HR = 0.96 [0.94; 0.98], p < 0.001), with lower HOMA-IR (RS, log-transformed ß = -0.017 [-0.024;-0.010], p < 0.001), and with lower CRP (RS, log-transformed ß = -0.014 [-0.022;-0.005], p = 0.002; UKB, ß = -0.011 [-0.012;-0.009], p < 0.001). We also observed associations of higher coffee consumption with higher serum adiponectin and IL-13 concentrations, and with lower leptin concentrations. Coffee-related CRP levels partially mediated the inverse association of coffee intake with T2D incidence (average mediation effect RS ß = 0.105 (0.014; 0.240), p = 0.016; UKB ß = 6.484 (4.265; 9.339), p < 0.001), with a proportion mediated by CRP from 3.7% [-0.012%; 24.4%] (RS) to 9.8% [5,7%; 25.8%] (UKB). No mediation effect was observed for the other biomarkers. Coffee-T2D and coffee-CRP associations were generally stronger among consumers of ground (filtered or espresso) coffee and among never and former smokers. CONCLUSIONS: Lower subclinical inflammation may partially mediate the beneficial association between coffee consumption and lower T2D risk. Consumers of ground coffee and non-smokers may benefit the most. KEYWORDS (MESH TERMS): coffee consumptions; diabetes mellitus, type 2; inflammation; adipokines; biomarkers; mediation analysis; follow-up studies.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , C-Reactive Protein/metabolism , Coffee , Leptin , Adiponectin , Biological Specimen Banks , Interleukin-13 , Biomarkers , Inflammation/epidemiology , United Kingdom/epidemiology , Risk Factors
7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768665

ABSTRACT

The development of chimeric antigen receptor T cells (CAR-T cells) has marked a new era in cancer immunotherapy. Based on a multitude of durable complete remissions in patients with hematological malignancies, FDA and EMA approval was issued to several CAR products targeting lymphoid leukemias and lymphomas. Nevertheless, about 50% of patients treated with these approved CAR products experience relapse or refractory disease necessitating salvage strategies. Moreover, in the vast majority of patients suffering from solid tumors, CAR-T-cell infusions could not induce durable complete remissions so far. Crucial obstacles to CAR-T-cell therapy resulting in a priori CAR-T-cell refractory disease or relapse after initially successful CAR-T-cell therapy encompass antigen shutdown and CAR-T-cell dysfunctionality. Antigen shutdown predominately rationalizes disease relapse in hematological malignancies, and CAR-T-cell dysfunctionality is characterized by insufficient CAR-T-cell proliferation and cytotoxicity frequently observed in patients with solid tumors. Thus, strategies to surmount those obstacles are being developed with high urgency. In this review, we want to highlight different approaches to combine CAR-T cells with drugs, such as small molecules and antibodies, to pharmacologically boost CAR-T-cell therapy. In particular, we discuss how certain drugs may help to counteract antigen shutdown and CAR-T-cell dysfunctionality in both hematological malignancies and solid tumors.


Subject(s)
Hematologic Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Immunotherapy, Adoptive/methods , Hematologic Neoplasms/therapy , Hematologic Neoplasms/etiology , Cell- and Tissue-Based Therapy
8.
Cancers (Basel) ; 14(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36291817

ABSTRACT

The addition of CAR-T cells to the armamentarium of immunotherapy revigorated the field of oncology by inducing long-lasting remissions in patients with relapsing/refractory hematological malignancies. Nevertheless, in the lion's share of patients diagnosed with solid tumors, CAR-T-cell therapy so far failed to demonstrate satisfactory anti-tumor activity. A crucial cause of resistance against the antigen-specific attack of CAR-T cells is predicated on the primary or secondary absence of suitable target antigens. Thus, the necessity to create a broad repertoire of different target antigens is vital. We aimed to evaluate the potential of the well-established melanoma antigen chondroitin sulfate proteoglycan 4 (CSPG4) as an inducible antigen in ovarian cancer cells, using CSPG4-negative SKOV-3 ovarian cancer cells as a model. Based on the hypomethylating activity of the FDA-approved drug decitabine, we refined a protocol to upregulate CSPG4 in the majority of decitabine-treated SKOV-3 cells. CSPG4-specific CAR-T cells generated by mRNA-electroporation showed CSPG4-directed cytokine secretion and cytotoxicity towards decitabine-treated SKOV-3. Another ovarian cancer cell line (Caov-3) and the neoplastic cell line 293T behaved similar. In aggregate, we generated proof-of-concept data paving the way for the further exploration of CSPG4 as an inducible antigen for CAR-T cells in ovarian cancer.

9.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955729

ABSTRACT

Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.


Subject(s)
Immune System Diseases , Neoplasms , B7-H1 Antigen/metabolism , Female , Humans , Neoplasms/drug therapy , Pregnancy , T-Lymphocytes/metabolism , Tumor Escape
10.
Front Immunol ; 13: 785231, 2022.
Article in English | MEDLINE | ID: mdl-35185883

ABSTRACT

Uveal melanoma (UM) is an orphan disease with a mortality of 80% within one year upon the development of metastatic disease. UM does hardly respond to chemotherapy and kinase inhibitors and is largely resistant to checkpoint inhibition. Hence, further therapy approaches are urgently needed. To improve clinical outcome, we designed a trial employing the 3rd generation personalized IKKß-matured RNA-transfected dendritic cell (DC) vaccine which primes T cells and in addition activates NK cells. This ongoing phase I trial [NCT04335890 (www.clinicaltrials.gov), Eudract: 2018-004390-28 (www.clinicaltrialsregister.eu)] investigates patients with treatment-naive metastatic UM. Monocytes are isolated by leukapheresis, differentiated to immature DCs, matured with a cytokine cocktail, and activated via the NF-κB pathway by electroporation with RNA encoding a constitutively active mutant of IKKß. Three types of antigen-RNA are co-electroporated: i) amplified mRNA of the tumor representing the whole transcriptome, ii) RNA encoding driver mutations identified by exome sequencing, and iii) overexpressed non-mutated tumor antigens detected by transcriptome sequencing. This highly personalized DC vaccine is applied by 9 intravenous infusions in a staggered schedule over one year. Parallel to the vaccination, standard therapy, usually an immune checkpoint blockade (ICB) as mono (anti-PD-1) or combined (anti-CTLA4 and anti-PD-1) regimen is initiated. The coordinated vaccine-induced immune response encompassing tumor-specific T cells and innate NK cells should synergize with ICB, perhaps resulting in measurable clinical responses in this resistant tumor entity. Primary outcome measures of this trial are safety, tolerability and toxicity; secondary outcome measures comprise overall survival and induction of antigen-specific T cells.


Subject(s)
Cancer Vaccines/therapeutic use , Dendritic Cells/immunology , I-kappa B Kinase/genetics , Melanoma/immunology , RNA/genetics , Uveal Neoplasms/immunology , Antigens, Neoplasm/immunology , Clinical Trials, Phase I as Topic , Electroporation , Humans , Immune Checkpoint Inhibitors/therapeutic use , Precision Medicine , Vaccination
11.
Int J Mol Sci ; 22(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34769379

ABSTRACT

BRAF and MEK inhibitor (BRAFi/MEKi) combinations are currently the standard treatment for patients with BRAFV600 mutant metastatic melanoma. Since the RAS/RAF/MEK/ERK-pathway is crucial for the function of different immune cells, we postulated an effect on their function and thus interference with anti-tumor immunity. Therefore, we examined the influence of BRAFi/MEKi, either as single agent or in combination, on the maturation of monocyte-derived dendritic cells (moDCs) and their interaction with T cells. DCs matured in the presence of vemurafenib or vemurafenib/cobimetinib altered their cytokine secretion and surface marker expression profile. Upon the antigen-specific stimulation of CD8+ and CD4+ T cells with these DCs or with T2.A1 cells in the presence of BRAFi/MEKi, we detected a lower expression of activation markers on and a lower cytokine secretion by these T cells. However, treatment with any of the inhibitors alone or in combination did not change the avidity of CD8+ T cells in peptide titration assays with T2.A1 cells. T-helper cell/DC interaction is a bi-directional process that normally results in DC activation. Vemurafenib and vemurafenib/cobimetinib completely abolished the helper T-cell-mediated upregulation of CD70, CD80, and CD86 but not CD25 on the DCs. The combination of dabrafenib/trametinib affected DC maturation and activation as well as T-cell activation less than combined vemurafenib/cobimetinib did. Hence, for a potential combination with immunotherapy, our data indicate the superiority of dabrafenib/trametinib treatment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Gene Expression Regulation, Neoplastic/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Apoptosis , Azetidines/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Humans , Imidazoles/pharmacology , Oximes/pharmacology , Piperidines/pharmacology , Pyridones/pharmacology , Pyrimidinones/pharmacology
12.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638566

ABSTRACT

Natural killer (NK) cells, members of the innate immune system, play an important role in the rejection of HLA class I negative tumor cells. Hence, a therapeutic vaccine, which can activate NK cells in addition to cells of the adaptive immune system might induce a more comprehensive cellular response, which could lead to increased tumor elimination. Dendritic cells (DCs) are capable of activating and expanding NK cells, especially when the NFκB pathway is activated in the DCs thereby leading to the secretion of the cytokine IL-12. Another prominent NK cell activator is IL-15, which can be bound by the IL-15 receptor alpha-chain (IL-15Rα) to be transpresented to the NK cells. However, monocyte-derived DCs do neither secrete IL-15, nor express the IL-15Rα. Hence, we designed a chimeric protein consisting of IL-15 and the IL-15Rα. Upon mRNA electroporation, the fusion protein was detectable on the surface of the DCs, and increased the potential of NFκB-activated, IL-12-producing DC to activate NK cells in an autologous cell culture system with ex vivo-generated cells from healthy donors. These data show that a chimeric IL-15/IL-15Rα molecule can be expressed by monocyte-derived DCs, is trafficked to the cell surface, and is functional regarding the activation of NK cells. These data represent an initial proof-of-concept for an additional possibility of further improving cellular DC-based immunotherapies of cancer.


Subject(s)
Dendritic Cells/immunology , Interleukin-15/biosynthesis , Killer Cells, Natural/immunology , Receptors, Interleukin-15/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Dendritic Cells/drug effects , Electroporation , Humans , I-kappa B Kinase/biosynthesis , I-kappa B Kinase/genetics , Immunotherapy , Interleukin-15/chemistry , Interleukin-15/genetics , Killer Cells, Natural/drug effects , Leukocytes, Mononuclear , NF-kappa B/pharmacology , Primary Cell Culture , Receptors, Interleukin-15/chemistry , Receptors, Interleukin-15/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics
13.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34445385

ABSTRACT

Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer with rising incidence and high mortality. Approximately 80% of the cases are caused by the human Merkel cell polyomavirus, while the remaining 20% are induced by UV light leading to mutations. The standard treatment of metastatic MCC is the use of anti-PD-1/-PD-L1-immune checkpoint inhibitors (ICI) such as Pembrolizumab or Avelumab, which in comparison with conventional chemotherapy show better overall response rates and longer duration of responses in patients. Nevertheless, 50% of the patients do not respond or develop ICI-induced, immune-related adverse events (irAEs), due to diverse mechanisms, such as down-regulation of MHC complexes or the induction of anti-inflammatory cytokines. Other immunotherapeutic options such as cytokines and pro-inflammatory agents or the use of therapeutic vaccination offer great ameliorations to ICI. Cytotoxic T-cells play a major role in the effectiveness of ICI, and tumour-infiltrating CD8+ T-cells and their phenotype contribute to the clinical outcome. This literature review presents a summary of current and future checkpoint inhibitor therapies in MCC and demonstrates alternative therapeutic options. Moreover, the importance of T-cell responses and their beneficial role in MCC treatment is discussed.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Merkel Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Skin Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Merkel Cell/immunology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Skin Neoplasms/immunology , Tumor Microenvironment
14.
Eur J Epidemiol ; 36(6): 649-654, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34275020

ABSTRACT

The Rotterdam Study is an ongoing prospective, population-based cohort study that started in 1989 in the city of Rotterdam, the Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. It focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. In response to the COVID-19 pandemic, a substudy was designed and embedded within the Rotterdam Study. On the 20th of April, 2020, all living non-institutionalized participants of the Rotterdam Study (n = 8732) were invited to participate in this sub-study by filling out a series of questionnaires administered over a period of 8 months. These questionnaires included questions on COVID-19 related symptoms and risk factors, characterization of lifestyle and mental health changes, and determination of health care seeking and health care avoiding behavior during the pandemic. As of May 2021, the questionnaire had been sent out repeatedly for a total of six times with an overall response rate of 76%. This article provides an overview of the rationale, design, and implementation of this sub-study nested within the Rotterdam Study. Finally, initial results on participant characteristics and prevalence of COVID-19 in this community-dwelling population are shown.


Subject(s)
COVID-19/epidemiology , Epidemiologic Research Design , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Netherlands/epidemiology , Pandemics , Population Surveillance , Prevalence , Prospective Studies , SARS-CoV-2 , Surveys and Questionnaires
15.
Theranostics ; 11(3): 1412-1428, 2021.
Article in English | MEDLINE | ID: mdl-33391542

ABSTRACT

Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKß-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency.


Subject(s)
Dendritic Cells/immunology , Neoplasms/immunology , Neoplasms/therapy , RNA, Untranslated/immunology , Adaptive Immunity/immunology , Cancer Vaccines/immunology , Cells, Cultured , Cytokines/immunology , Humans , I-kappa B Kinase/immunology , Immunotherapy/methods , MicroRNAs/immunology , Signal Transduction/immunology
16.
Front Cell Dev Biol ; 9: 746359, 2021.
Article in English | MEDLINE | ID: mdl-35186943

ABSTRACT

Dendritic cells (DCs) can be used for therapeutic vaccination against cancer. The success of this therapy depends on efficient tumor-antigen presentation to cytotoxic T lymphocytes (CTLs) and the induction of durable CTL responses by the DCs. Therefore, simulation of such a biological system by computational modeling is appealing because it can improve our understanding of the molecular mechanisms underlying CTL induction by DCs and help identify new strategies to improve therapeutic DC vaccination for cancer. Here, we developed a multi-level model accounting for the life cycle of DCs during anti-cancer immunotherapy. Specifically, the model is composed of three parts representing different stages of DC immunotherapy - the spreading and bio-distribution of intravenously injected DCs in human organs, the biochemical reactions regulating the DCs' maturation and activation, and DC-mediated activation of CTLs. We calibrated the model using quantitative experimental data that account for the activation of key molecular circuits within DCs, the bio-distribution of DCs in the body, and the interaction between DCs and T cells. We showed how such a data-driven model can be exploited in combination with sensitivity analysis and model simulations to identify targets for enhancing anti-cancer DC vaccination. Since other previous works show how modeling improves therapy schedules and DC dosage, we here focused on the molecular optimization of the therapy. In line with this, we simulated the effect in DC vaccination of the concerted modulation of combined intracellular regulatory processes and proposed several possibilities that can enhance DC-mediated immunogenicity. Taken together, we present a comprehensive time-resolved multi-level model for studying DC vaccination in melanoma. Although the model is not intended for personalized patient therapy, it could be used as a tool for identifying molecular targets for optimizing DC-based therapy for cancer, which ultimately should be tested in in vitro and in vivo experiments.

17.
Cancers (Basel) ; 12(9)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916883

ABSTRACT

CAR-T cells showed great potential in the treatment of patients with hematologic tumors. However, the clinical efficacy of CAR-T cells against solid tumors lags behind. To obtain a comprehensive overview of the landscape of CAR-T cell clinical trials against this type of cancer, this review summarizes all the 196 studies registered at clinicaltrials.gov. Special focus is on: (1) geographical distribution; (2) targeted organs, tumor entities, and antigens; (3) CAR transfer methods, CAR formats, and extra features introduced into the T cells; and (4) patient pretreatments, injection sites, and safety measurements. Finally, the few data on clinical outcome are reported. The last assessment of clinicaltrials.gov for the data summarized in this paper was on 4 August 2020.

18.
BMC Med ; 18(1): 263, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32967688

ABSTRACT

BACKGROUND: Evidence has pointed towards differences in the burden of arteriosclerosis according to its location and sex. Yet there is a scarcity of population-based data on aggregated sex-specific cardiovascular risk profiles, instead of single risk factors, and mortality risk according to the location of arteriosclerosis. We assessed sex-specific cardiovascular risk profiles and mortality risk associated with arteriosclerosis. METHODS: From the population-based Rotterdam Study, 2357 participants (mean age 69 years, 53% women) underwent non-contrast computed tomography to quantify calcification, as a proxy for arteriosclerosis, in the coronary arteries (CAC), aortic arch (AAC), extracranial (ECAC) and intracranial carotid arteries (ICAC), vertebrobasilar arteries (VBAC), and aortic valve (AVC). Principal component analysis (PCA) of eight distinct cardiovascular risk factors was performed, separately for women and men, to derive risk profiles based on the shared variance between factors. We used sex-stratified multivariable logistic regression to examine the associations between PCA-derived risk profiles and severe calcification at different locations. We investigated the associations of severe calcification with mortality risk using sex-stratified multivariable Cox regression. RESULTS: PCA identified three cardiovascular risk profiles in both sexes: (1) anthropometry, glucose, and HDL cholesterol; (2) blood pressure; and (3) smoking and total cholesterol. In women, the strongest associations were found for profile 2 with severe ECAC and ICAC (adjusted OR [95% CI] 1.32 [1.14-1.53]) and for profile 3 with severe at all locations, except AVC. In men, the strongest associations were found for profile 2 with VBAC (1.31 [1.12-1.52]) and profile 3 with severe AAC (1.28 [1.09-1.51]). ECAC and AVC in women and CAC in men showed the strongest, independent associations with cardiovascular mortality (HR [95% CI] 2.11 [1.22-3.66], 2.05 [1.21-3.49], 2.24 [1.21-3.78], respectively). CONCLUSIONS: Our findings further underline the existence of sex- and location-specific differences in the etiology and consequences of arteriosclerosis. Future research should unravel which distinct pathological processes underlie differences in risk profiles for arteriosclerosis.


Subject(s)
Arteriosclerosis/epidemiology , Cardiovascular Diseases/epidemiology , Coronary Artery Disease/epidemiology , Heart Disease Risk Factors , Aged , Arteriosclerosis/mortality , Cardiovascular Diseases/mortality , Coronary Artery Disease/mortality , Female , Humans , Male , Risk Factors , Sex Factors , Survival Analysis
19.
Antioxidants (Basel) ; 9(8)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785027

ABSTRACT

Although there is some evidence that total dietary antioxidant capacity (TDAC) is inversely associated with the presence of obesity, no longitudinal studies have been performed investigating the effect of TDAC on comprehensive measures of body composition over time. In this study, we included 4595 middle-aged and elderly participants from the Rotterdam Study, a population-based cohort. We estimated TDAC among these individuals by calculating a ferric reducing ability of plasma (FRAP) score based on data from food-frequency questionnaires. Body composition was assessed by means of dual X-ray absorptiometry at baseline and every subsequent 3-5 years. From these data, we calculated fat mass index (FMI), fat-free mass index (FFMI), android-to-gynoid fat ratio (AGR), body fat percentage (BF%) and body mass index (BMI). We also assessed hand grip strength at two time points and prevalence of sarcopenia at one time point in a subset of participants. Data were analyzed using linear mixed models or multinomial logistic regression models with multivariable adjustment. We found that higher FRAP score was associated with higher FFMI (0.091 kg/m2 per standard deviation (SD) higher FRAP score, 95% CI 0.031; 0.150), lower AGR (-0.028, 95% CI -0.053; -0.003), higher BMI (0.115, 95% CI 0.020; 0.209) and lower BF% (-0.223, 95% CI -0.383; -0.064) across follow-up after multivariable adjustment. FRAP score was not associated with hand grip strength or sarcopenia. Additional adjustment for adherence to dietary guidelines and exclusion of individuals with comorbid disease at baseline did not change our results. In conclusion, dietary intake of antioxidants may positively affect the amount of lean mass and overall body composition among the middle-aged and elderly.

20.
Int J Mol Sci ; 21(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429316

ABSTRACT

When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.


Subject(s)
Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/immunology , Clinical Trials as Topic , Humans , Protein Domains , Receptors, Chimeric Antigen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...