Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biodegradation ; 28(5-6): 395-412, 2017 12.
Article in English | MEDLINE | ID: mdl-28780760

ABSTRACT

The dissipation of atrazine, chlorpyrifos and iprodione in a biopurification system and changes in the microbial and some biological parameters influenced by the rhizosphere of Lolium perenne were studied in a column system packed with an organic biomixture. Three column depths were analyzed for residual pesticides, peroxidase, fluorescein diacetate activity and microbial communities. Fungal colonization was analyzed by confocal laser scanning microscopy to assess the extent of its proliferation in wheat straw. The L. perenne rhizosphere enhanced pesticide dissipation and negligible pesticide residues were detected at 20-30 cm column depth. Atrazine, chlorpyrifos and iprodione removal was 82, 89 and 74% respectively in the first 10 cm depth for columns with vegetal cover. The presence of L. perenne in contaminated columns stimulated peroxidase activity in all three column depth sections. Fluorescein diacetate activity decreased over time in all column sections with the highest values in biomixtures with vegetal cover. Microbial communities, analyzed by PCR-DGGE, were not affected by the pesticide mixture application, presenting high values of similarity (>65%) with and without vegetal cover. Microbial abundance of Actinobacteria varied according to treatment and no clear link was observed. However, bacterial abundance increased over time and was similar with and without vegetal cover. On the other hand, fungal abundance decreased in all sections of columns after 40 days, but an increase was observed in response to pesticide application. Fungal colonization and straw degradation during pesticide dissipation were verified by monitoring the lignin autofluorescence loss.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Pesticides/metabolism , Soil Pollutants/metabolism , Atrazine/chemistry , Atrazine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Chlorpyrifos/chemistry , Chlorpyrifos/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Pesticides/chemistry , Rhizosphere , Soil Microbiology , Soil Pollutants/chemistry
2.
J Appl Microbiol ; 123(4): 886-895, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28718996

ABSTRACT

AIMS: The aim of this study was to evaluate the synthesis of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi (WRF) using peels or discarded potato as the sole nutrient source. METHODS AND RESULTS: The strain Trametes hirsuta Ru-513 highlighted for its laccase activity (595 ± 33 U l-1 ), which is able to decolourize 87% of an anthraquinone dye using potato peels as the sole nutritional support. A native polyacrylamide gel of laccase proteins showed the presence of two isoenzymes, corresponding to proteins of 56 and 67 kDa, which were detected by SDS-PAGE. The antifungal activity of ethyl acetate extracts was evaluated by the agar diffusion method, where Anthracophyllum discolor Sp4 and Inonotus sp. Sp2 showed the highest inhibition zones of Mucor miehei. The fungal extracts also inhibited Fusarium oxysporum and Botrytis cinerea growth, with inhibition zones of up to 18 mm. The extract with the highest antifungal activity, from A. discolor Sp4 grown in discarded potato medium, was analysed using a gas chromatograph coupled to a mass spectrometer. Among the identified compounds, chlorinated aromatic compounds and veratryl alcohol were the most abundant compounds. CONCLUSIONS: The results revealed the relevance of potato waste valorization for the sustainable production of ligninolytic enzymes and antifungal compounds. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports the synthesis of ligninolytic enzymes and diffusible antifungal compounds by WRF using potato wastes as the sole nutrient source and suggests a relationship between the enzymatic activity and the synthesis of antifungal compounds. These compounds and the synthesis of halogen compounds by WRF using agro-industrial wastes have been poorly studied before.


Subject(s)
Agaricales/metabolism , Antifungal Agents/metabolism , Fungal Proteins/metabolism , Laccase/metabolism , Solanum tuberosum/microbiology , Solid Waste/analysis , Trametes/enzymology , Agaricales/chemistry , Agaricales/growth & development , Coloring Agents/metabolism , Culture Media/metabolism , Electrophoresis, Polyacrylamide Gel , Fungal Proteins/chemistry , Industrial Waste/analysis , Trametes/chemistry , Trametes/growth & development , Trametes/metabolism
3.
Chemosphere ; 156: 195-203, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27176942

ABSTRACT

Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices.


Subject(s)
Diazinon/metabolism , Pyrimidines/metabolism , Streptomyces/metabolism , Half-Life , Hydrolysis , Streptomyces/growth & development , Streptomyces/isolation & purification
4.
Crit Rev Biotechnol ; 36(1): 144-52, 2016.
Article in English | MEDLINE | ID: mdl-25198437

ABSTRACT

Fungi are an extraordinary and immensely diverse group of microorganisms that colonize many habitats even competing with other microorganisms. Fungi have received recognition for interesting metabolic activities that have an enormous variety of biotechnological applications. Previously, volatile organic compounds produced by fungi (FVOCs) have been demonstrated to have a great capacity for use as antagonist products against plant pathogens. However, in recent years, FVOCs have been received attention as potential alternatives to the use of traditional pesticides and, therefore, as important eco-friendly biotechnological tools to control plant pathogens. Therefore, highlighting the current state of knowledge of these fascinating FVOCs, the actual detection techniques and the bioactivity against plant pathogens is essential to the discovery of new products that can be used as biopesticides.


Subject(s)
Biotechnology , Fungi/metabolism , Plant Diseases/prevention & control , Volatile Organic Compounds/metabolism , Fungi/chemistry , Plant Diseases/microbiology , Plants/drug effects , Plants/microbiology , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...