Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Horm Behav ; 130: 104948, 2021 04.
Article in English | MEDLINE | ID: mdl-33571507

ABSTRACT

Development of estrogen therapies targeting the ß (ERß) but not α (ERα) estrogen receptor is critically needed for the treatment of negative menopausal symptoms, as ERα activation increases health risks like cancer. Here, we determined the effects of long-term oral treatment with EGX358, a novel highly selective ERß agonist, on memory, vasodilation, and affect in young ovariectomized mice. Mice were orally gavaged daily for 9 weeks with vehicle, 17ß-estradiol (E2), the ERß agonist diarylpropionitrile (DPN), or EGX358 at doses that enhance memory when delivered acutely. Tail skin temperature was recorded as a proxy for vasodilation following injection of vehicle or senktide, a tachykinin receptor 3 agonist used to model hot flashes. Anxiety-like behavior was assessed in the open field (OF) and elevated plus maze (EPM), and depression-like behavior was measured in the tail suspension (TST) and forced swim tests (FST). Finally, memory was assessed in object recognition (OR) and object placement (OP) tasks. E2, DPN, and EGX358 reduced senktide-mediated increases in tail skin temperature compared to vehicle. All three treatments also enhanced memory in the OR and OP tasks, whereas vehicle did not. Although E2 increased time spent in the center of the OF, no other treatment effects were observed in the OF, EPM, TST, or FST. These data suggest that long-term ERß activation can reduce hot flash-like symptoms and enhance spatial and object recognition memories in ovariectomized mice. Thus, the highly selective ERß agonist EGX358 may be a promising avenue for reducing menopause-related hot flashes and memory dysfunction.


Subject(s)
Estrogen Receptor beta , Pharmaceutical Preparations , Administration, Oral , Animals , Estradiol/pharmacology , Estrogen Receptor alpha , Female , Humans , Mice , Nitriles/pharmacology , Ovariectomy , Vasodilation
2.
J Neurosci ; 39(48): 9598-9610, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31628182

ABSTRACT

Activation of the membrane estrogen receptor G-protein-coupled estrogen receptor (GPER) in ovariectomized mice via the GPER agonist G-1 mimics the beneficial effects of 17ß-estradiol (E2) on hippocampal CA1 spine density and memory consolidation, yet the cell-signaling mechanisms mediating these effects remain unclear. The present study examined the role of actin polymerization and c-Jun N-terminal kinase (JNK) phosphorylation in mediating effects of dorsal hippocampally infused G-1 on CA1 dendritic spine density and consolidation of object recognition and spatial memories in ovariectomized mice. We first showed that object learning increased apical CA1 spine density in the dorsal hippocampus (DH) within 40 min. We then found that DH infusion of G-1 increased both CA1 spine density and phosphorylation of the actin polymerization regulator cofilin, suggesting that activation of GPER may increase spine morphogenesis through actin polymerization. As with memory consolidation in our previous work (Kim et al., 2016), effects of G-1 on CA1 spine density and cofilin phosphorylation depended on JNK phosphorylation in the DH. Also consistent with our previous findings, E2-induced cofilin phosphorylation was not dependent on GPER activation. Finally, we found that infusion of the actin polymerization inhibitor, latrunculin A, into the DH prevented G-1 from increasing apical CA1 spine density and enhancing both object recognition and spatial memory consolidation. Collectively, these data demonstrate that GPER-mediated hippocampal spinogenesis and memory consolidation depend on JNK and cofilin signaling, supporting a critical role for actin polymerization in the GPER-induced regulation of hippocampal function in female mice.SIGNIFICANCE STATEMENT Emerging evidence suggests that G-protein-coupled estrogen receptor (GPER) activation mimics effects of 17ß-estradiol on hippocampal memory consolidation. Unlike canonical estrogen receptors, GPER activation is associated with reduced cancer cell proliferation; thus, understanding the molecular mechanisms through which GPER regulates hippocampal function may provide new avenues for the development of drugs that provide the cognitive benefits of estrogens without harmful side effects. Here, we demonstrate that GPER increases CA1 dendritic spine density and hippocampal memory consolidation in a manner dependent on actin polymerization and c-Jun N-terminal kinase phosphorylation. These findings provide novel insights into the role of GPER in mediating hippocampal morphology and memory consolidation, and may suggest first steps toward new therapeutics that more safely and effectively reduce memory decline in menopausal women.


Subject(s)
Actins/metabolism , CA1 Region, Hippocampal/metabolism , Dendritic Spines/metabolism , Memory Consolidation/physiology , Polymerization , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Actins/analysis , Animals , CA1 Region, Hippocampal/chemistry , Dendritic Spines/chemistry , Female , Mice , Mice, Inbred C57BL , Receptors, Estrogen/analysis , Receptors, G-Protein-Coupled/analysis
3.
eNeuro ; 6(2)2019.
Article in English | MEDLINE | ID: mdl-31016230

ABSTRACT

The importance of the dorsal hippocampus (DH) in mediating the memory-enhancing effects of the sex-steroid hormone 17ß-estradiol (E2) is well established. However, estrogen receptors (ERs) are highly expressed in other brain regions that support memory formation, including the medial prefrontal cortex (mPFC). The mPFC and DH interact to mediate the formation of several types of memory, and behavioral tasks that recruit the mPFC are enhanced by systemic E2 administration, making this region a prime candidate for investigating circuit-level questions regarding the estrogenic regulation of memory. Further, infusion of E2 directly into the DH increases dendritic spine density in both the DH and mPFC, and this effect depends upon rapid activation of cell-signaling pathways in the DH, demonstrating a previously unexplored interaction between the DH and mPFC that led us to question the role of the mPFC in object memory consolidation and the necessity of DH-mPFC interactions in the memory-enhancing effects of E2. Here, we found that infusion of E2 directly into the mPFC of ovariectomized mice increased mPFC apical spine density and facilitated object recognition and spatial memory consolidation, demonstrating that E2 in the mPFC increases spinogenesis and enhances on memory consolidation. Next, chemogenetic suppression of the mPFC blocked the beneficial effects of DH-infused E2 on memory consolidation, indicating that systems-level DH-mPFC interactions are necessary for the memory-enhancing effects of E2. Together, these studies provide evidence that E2 in the mPFC mediates memory formation, and reveal that the DH and mPFC act in concert to support the memory-enhancing effects of E2 in female mice.


Subject(s)
Dendritic Spines/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Hippocampus/drug effects , Memory Consolidation/drug effects , Nootropic Agents/pharmacology , Prefrontal Cortex/drug effects , Recognition, Psychology/drug effects , Spatial Memory/drug effects , Animals , Estradiol/administration & dosage , Estrogens/administration & dosage , Female , Mice , Mice, Inbred C57BL , Nootropic Agents/administration & dosage , Ovariectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...