Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 27(23): 5277-5283, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29079472

ABSTRACT

We identified 6-substituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). The synthesis of this class of RORγt modulators is reported, and optimization of the substituents at the quinoline 6-position that produced compounds with high affinity for the receptor is detailed. This effort identified molecules that act as potent, full inverse agonists in a RORγt-driven cell-based reporter assay. The X-ray crystal structures of two full inverse agonists from this chemical series bound to the RORγt ligand binding domain are disclosed, and we highlight the interaction of a hydrogen-bond acceptor on the 6-position substituent of the inverse agonist with Glu379:NH as a conserved binding contact.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Quinolines/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
2.
J Biol Chem ; 292(43): 17963-17974, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28860188

ABSTRACT

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.


Subject(s)
Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Domains
3.
Bioorg Med Chem Lett ; 27(9): 2047-2057, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28318945

ABSTRACT

A high-throughput screen of the ligand binding domain of the nuclear receptor retinoic acid-related orphan receptor gamma t (RORγt) employing a thermal shift assay yielded a quinoline tertiary alcohol hit. Optimization of the 2-, 3- and 4-positions of the quinoline core using structure-activity relationships and structure-based drug design methods led to the discovery of a series of modulators with improved RORγt inhibitory potency and inverse agonism properties.


Subject(s)
Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Quinolines/chemistry , Quinolines/pharmacology , Humans , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , Th17 Cells/drug effects
4.
J Biomol Screen ; 17(5): 629-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496098

ABSTRACT

Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign. Ligands were discovered using ThermoFluor, a label-free affinity-based screening tool that measures ligand binding via modulation of protein thermal stability. A kinetic fluorescent assay using the substrate 4-methylcoumarin butyrate was used to counterscreen confirmed HTS positives. A comparison of results from binding and inhibition assays allowed elucidation of compound mechanism of action. We demonstrate the limit of each technology and the benefits of using orthogonal assay techniques in profiling compounds.


Subject(s)
Catalytic Domain/drug effects , Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Arachidonic Acids/chemistry , Endocannabinoids , Enzyme Inhibitors/chemistry , Glycerides/chemistry , High-Throughput Screening Assays , Humans , Hydrolysis , Inhibitory Concentration 50 , Kinetics , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Protein Binding , Solubility , Substrate Specificity
5.
Methods Enzymol ; 493: 277-98, 2011.
Article in English | MEDLINE | ID: mdl-21371595

ABSTRACT

Measuring the strength of binding of low molecular weight ligands to a target protein is a significant challenge to fragment-based drug discovery that must be solved. Thermal shift assays are uniquely suited for this purpose, due to the thermodynamic effects of a ligand on protein thermal stability. We show here how to implement a thermal shift assay, describing the basic features and analysis of the protein unfolding data. We then describe in detail the effects of a ligand on the observed stability of the protein to produce a shift in stability. The anatomy of ligand-induced thermal shift data is discussed in detail. We describe the unique aspects of concentration-response curves, the effect of protein unfolding energetics, and the stoichiometry of the interaction. We outline a typical assay development strategy for optimizing dye type and concentration, protein concentration, and buffer conditions. Guidelines are presented to demonstrate the limits of detection for weak-binding ligands, as applied to sulfonamide-based inhibitors of carbonic anhydrase II and applied to nucleotide binding to the death-associated protein kinase 1 catalytic domain.


Subject(s)
Drug Discovery/methods , Anilino Naphthalenesulfonates/chemistry , Apoptosis Regulatory Proteins/chemistry , Calcium-Calmodulin-Dependent Protein Kinases/chemistry , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Death-Associated Protein Kinases , Fluorescent Dyes/chemistry , Ligands , Molecular Weight , Nucleotides , Protein Binding , Protein Denaturation , Protein Stability , Proteins/chemistry , Sulfonamides/pharmacology , Thermodynamics
6.
Protein Sci ; 20(4): 670-83, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21308848

ABSTRACT

A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.


Subject(s)
Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Arachidonic Acids/chemistry , Arachidonic Acids/metabolism , Cannabinoid Receptor Modulators/chemistry , Cannabinoid Receptor Modulators/metabolism , Catalytic Domain , Crystallography, X-Ray , Endocannabinoids , Glycerides/chemistry , Glycerides/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Molecular Structure , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Mutagenesis, Site-Directed , Protein Binding , Static Electricity
7.
J Lipid Res ; 52(2): 374-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21062953

ABSTRACT

Endothelial lipase (EL) is a phospholipase A1 (PLA1) enzyme that hydrolyzes phospholipids at the sn-1 position to produce lysophospholipids and free fatty acids. Measurement of the PLA1 activity of EL is usually accomplished by the use of substrates that are also hydrolyzed by lipases in other subfamilies such as PLA2 enzymes. In order to distinguish PLA1 activity of EL from PLA2 enzymatic activity in cell-based assays, cell supernatants, and other nonhomogeneous systems, a novel fluorogenic substrate with selectivity toward PLA1 hydrolysis was conceived and characterized. This substrate was preferred by PLA1 enzymes, such as EL and hepatic lipase, and was cleaved with much lower efficiency by lipases that exhibit primarily triglyceride lipase activity, such as LPL or a lipase with PLA2 activity. The phospholipase activity detected by the PLA1 substrate could be inhibited with the small molecule esterase inhibitor ebelactone B. Furthermore, the PLA1 substrate was able to detect EL activity in human umbilical vein endothelial cells in a cell-based assay. This substrate is a useful reagent for identifying modulators of PLA1 enzymes, such as EL, and aiding in characterizing their mechanisms of action.


Subject(s)
Boron Compounds/metabolism , Endothelium/enzymology , Lysophospholipids/metabolism , Phospholipases A1/analysis , Animals , Fluorescent Dyes/metabolism , Humans , Lactones/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Mice , Phospholipases A1/antagonists & inhibitors
8.
J Biomol Screen ; 12(3): 418-28, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17438070

ABSTRACT

The reliable production of large amounts of stable, high-quality proteins is a major challenge facing pharmaceutical protein biochemists, necessary for fulfilling demands from structural biology, for high-throughput screening, and for assay purposes throughout early discovery. One strategy for bypassing purification challenges in problematic systems is to engineer multiple forms of a particular protein to optimize expression, purification, and stability, often resulting in a nonphysiological sub-domain. An alternative strategy is to alter process conditions to maximize wild-type construct stability, based on a specific protein stability profile (PSP). ThermoFluor, a miniaturized 384-well thermal stability assay, has been implemented as a means of monitoring solution-dependent changes in protein stability, complementing the protein engineering and purification processes. A systematic analysis of pH, buffer or salt identity and concentration, biological metals, surfactants, and common excipients in terms of an effect on protein stability rapidly identifies conditions that might be used (or avoided) during protein production. Two PSPs are presented for the kinase catalytic domains of Akt-3 and cFMS, in which information derived from a ThermoFluor PSP led to an altered purification strategy, improving the yield and quality of the protein using the primary sequences of the catalytic domains.


Subject(s)
Proto-Oncogene Proteins c-akt/biosynthesis , Proto-Oncogene Proteins c-akt/chemistry , Receptor, Macrophage Colony-Stimulating Factor/biosynthesis , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Buffers , Fluorescence , Hydrogen-Ion Concentration , Metals/pharmacology , Osmolar Concentration , Protein Structure, Quaternary/drug effects , Proto-Oncogene Proteins c-akt/isolation & purification , Receptor, Macrophage Colony-Stimulating Factor/isolation & purification , Recombinant Proteins/isolation & purification , Recombinant Proteins/standards , Salts/pharmacology , Solutions/pharmacology , Thermodynamics
9.
J Biol Chem ; 282(6): 4094-101, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132624

ABSTRACT

The cFMS proto-oncogene encodes for the colony-stimulating factor-1 receptor, a receptor-tyrosine kinase responsible for the differentiation and maturation of certain macrophages. Upon binding its ligand colony-stimulating factor-1 cFMS autophosphorylates, dimerizes, and induces phosphorylation of downstream targets. We report the novel crystal structure of unphosphorylated cFMS in complex with two members of different classes of drug-like protein kinase inhibitors. cFMS exhibits a typical bi-lobal kinase fold, and its activation loop and DFG motif are found to be in the canonical inactive conformation. Both ATP competitive inhibitors are bound in the active site and demonstrate a binding mode similar to that of STI-571 bound to cABL. The DFG motif is prevented from switching into the catalytically competent conformation through interactions with the inhibitors. Activation of cFMS is also inhibited by the juxtamembrane domain, which interacts with residues of the active site and prevents formation of the activated kinase. Together the structures of cFMS provide further insight into the autoinhibition of receptor-tyrosine kinases via their respective juxtamembrane domains; additionally the binding mode of two novel classes of kinase inhibitors will guide the design of novel molecules targeting macrophage-related diseases.


Subject(s)
Protein Kinase Inhibitors/chemistry , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/chemistry , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Amides/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/antagonists & inhibitors , Mutant Chimeric Proteins/chemistry , Protein Structure, Tertiary/genetics , Proto-Oncogene Mas , Quinolones/chemistry , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/genetics , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/genetics
10.
J Biol Chem ; 282(6): 4085-93, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17132625

ABSTRACT

A parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases. Characterization of the newly generated FMS constructs by enzymology and thermoshift assays demonstrated similar activities and compound binding to the FMS full-length cytoplasmic domain. Two chimeras were evaluated for crystallization in the presence and absence of a variety of ligands resulting in crystal structures, and leading to a successful structure-based drug design project for this important inflammation target.


Subject(s)
Protein Engineering , Receptor Protein-Tyrosine Kinases/chemical synthesis , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Crystallization , Cytoplasm/chemistry , Cytoplasm/genetics , Humans , Molecular Sequence Data , Mutant Chimeric Proteins/chemical synthesis , Mutant Chimeric Proteins/genetics , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Sequence Alignment , Spodoptera
11.
J Med Chem ; 48(6): 1717-20, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-15771417

ABSTRACT

2-Hydroxy-4,6-diamino-[1,3,5]triazines are described which are a novel class of potent inhibitors of the VEGF-R2 (flk-1/KDR) tyrosine kinase. 4-(Benzothiazol-6-ylamino)-6-(benzyl-isopropyl-amino)-[1,3,5]triazin-2-ol (14d) exhibited low nanomolar potency in the in vitro enzyme inhibition assay (IC(50) = 18 nM) and submicromolar inhibitory activity in a KDR-induced MAP kinase autophosphorylation assay in HUVEC cells (IC(50) = 280 nM), and also demonstrated good in vitro selectivity against a panel of growth factor receptor tyrosine kinases. Further, 14d showed antiangiogenic activity in an aortic ring explant assay by blocking endothelial outgrowths in rat aortas with an IC(50) of 1 microM.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Thiazoles/chemical synthesis , Triazines/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/chemistry , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Aorta/drug effects , Aorta/physiology , Benzothiazoles , Capillaries/drug effects , Capillaries/physiology , Cell Line , Combinatorial Chemistry Techniques , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiology , Humans , Organ Culture Techniques , Phosphorylation , Rats , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Triazines/chemistry , Triazines/pharmacology , Umbilical Veins/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...