Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 107(28): 12605-10, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-20616015

ABSTRACT

Epidermal growth factor receptor (EGFR)-specific monoclonal antibodies predominantly inhibit colorectal cancer (CRC) growth by interfering with receptor signaling. Recent analyses have shown that patients with CRC with mutated KRAS and BRAF oncogenes do not profit from treatment with such antibodies. Here we have used the binding domains of cetuximab and pantitumumab for constructing T cell-engaging BiTE antibodies. Both EGFR-specific BiTE antibodies mediated potent redirected lysis of KRAS- and BRAF-mutated CRC lines by human T cells at subpicomolar concentrations. The cetuximab-based BiTE antibody also prevented at very low doses growth of tumors from KRAS- and BRAF-mutated human CRC xenografts, whereas cetuximab was not effective. In nonhuman primates, no significant adverse events were observed during treatment for 3 wk at BiTE serum concentrations inducing, within 1 d, complete lysis of EGFR-overexpressing cancer cells. EGFR-specific BiTE antibodies may have potential to treat CRC that does not respond to conventional antibodies.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , ErbB Receptors/antagonists & inhibitors , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Cetuximab , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Genes, ras/drug effects , Humans , Mutation/drug effects , Neoplasms/genetics , Proto-Oncogene Proteins B-raf , Risk Factors
2.
J Immunother ; 32(4): 341-52, 2009 May.
Article in English | MEDLINE | ID: mdl-19342971

ABSTRACT

Carcinoembryonic antigen (CEA, CD66e) is a well-characterized tumor-associated antigen that is frequently overexpressed in tumors. Phospholipases release CEA from tumor cells resulting in high circulating serum levels of soluble CEA (sCEA) that has been validated as marker for progression of colorectal, breast, and lung cancers. sCEA also acts as a competitive inhibitor for anticancer strategies targeting membrane-bound CEA. As a novel therapeutic approach for treatment of tumors expressing CEA on their cell surface, we constructed a series of bispecific single-chain antibodies (bscAb) combining various single-chain variable fragments recognizing human CEA with a deimmunized single-chain variable fragments recognizing human CD3. CEA/CD3-bscAbs redirected human T cells to lyse CEA-expressing tumor cells in vitro and in vivo. Efficient tumor cell lysis was achieved in vitro at bscAb concentrations from 1 pg/mL (19 fM) to 8.9 pg/mL with preactivated CD8 T cells, and 200 to 500 pg/mL with unstimulated peripheral blood mononuclear cell. The cytotoxic activity of a subset of CEA/CD3-bscAbs was not competitively inhibited by sCEA at concentrations that exceeded levels found in the serum of most cancer patients. Treatment with CEA/CD3-bscAbs prevented the growth of human colorectal cancer lines in a severe combined immunodeficiency mouse model modified to show human T cell killing of tumors. A murine surrogate CEA/CD3-bscAb capable of recruiting murine T cells for redirected tumor lysis in immunocompetent mice prevented the growth of lung tumors expressing human CEA. Together, our results reveal a unique opportunity for targeting cytotoxic T cells toward CEA-expressing tumors without being competitively inhibited by sCEA and establish CEA/CD3-bscAb as a promising and potent therapeutic approach.


Subject(s)
Antibodies, Bispecific/therapeutic use , CD3 Complex/immunology , CD8-Positive T-Lymphocytes/immunology , Carcinoembryonic Antigen/immunology , Colorectal Neoplasms/therapy , Recombinant Fusion Proteins/therapeutic use , Animals , Antibodies, Bispecific/immunology , CD8-Positive T-Lymphocytes/metabolism , CHO Cells , Carcinoembryonic Antigen/blood , Cricetinae , Cricetulus , Humans , Immunotherapy , Mice , Mice, SCID , Recombinant Fusion Proteins/immunology , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/immunology
3.
Mol Cell Biol ; 22(22): 8035-43, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12391169

ABSTRACT

Macrophages play a crucial role in the defense against pathogens. Distinct macrophage populations can be defined by the expression of restricted cell surface proteins. Resident tissue macrophages, encompassing Kupffer cells of the liver and red pulp macrophages of the spleen, characteristically express the F4/80 molecule, a cell surface glycoprotein related to the seven transmembrane-spanning family of hormone receptors. In this study, gene targeting was used to simultaneously inactivate the F4/80 molecule in the germ line of the mouse and to produce a mouse line that expresses the Cre recombinase under the direct control of the F4/80 promoter (F4/80-Cre knock-in). F4/80-deficient mice are healthy and fertile. Macrophage populations in tissues can develop in the absence of F4/80 expression. Functional analysis revealed that the generation of T-cell-independent B-cell responses and macrophage antimicrobial defense after infection with Listeria monocytogenes are not impaired in the absence of F4/80. Interestingly, tissues of F4/80-deficient mice could not be labeled with anti-BM8, another macrophage subset-specific marker with hitherto undefined molecular antigenic structure. Recombinant expression of a F4/80 cDNA in heterologous cells confirmed this observation, indicating that the targets recognized by the F4/80 and BM8 monoclonal antibodies are identical.


Subject(s)
Antigens, Differentiation/genetics , Germ Cells/physiology , I-kappa B Proteins , Macrophages/physiology , Animals , Antibodies, Monoclonal/metabolism , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , B-Lymphocytes/metabolism , Cell Line , DNA-Binding Proteins/genetics , Gene Targeting , Genotype , Humans , Integrases/genetics , Integrases/metabolism , Macrophages/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , NF-KappaB Inhibitor alpha , T-Lymphocytes/metabolism , Tissue Distribution , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...