Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 126(18): 180605, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018800

ABSTRACT

There are two paradigms to study nanoscale engines in stochastic and quantum thermodynamics. Autonomous models, which do not rely on any external time dependence, and models that make use of time-dependent control fields, often combined with dividing the control protocol into idealized strokes of a thermodynamic cycle. While the latter paradigm offers theoretical simplifications, its utility in practice has been questioned due to the involved approximations. Here, we bridge the two paradigms by constructing an autonomous model, which implements a thermodynamic cycle in a certain parameter regime. This effect is made possible by self-oscillations, realized in our model by the well-studied electron shuttling mechanism. Based on experimentally realistic values, we find that a thermodynamic cycle analysis for a single-electron working fluid is not justified, but a few-electron working fluid could suffice to justify it. Furthermore, additional open challenges remain to autonomously implement the more studied Carnot and Otto cycles.

2.
Entropy (Basel) ; 22(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-33286296

ABSTRACT

We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakowski-Sudarshan generator. By combining the formalism with full counting statistics, we can demonstrate a consistent thermodynamic framework, once the switching work required for the coupling and decoupling with the reservoir is included. Particularly, we can write the second law in standard form, with the only difference that heat currents must be defined with respect to the reservoir. We exemplify our findings with simple but pedagogical examples.

3.
Phys Rev E ; 100(4-1): 042126, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31771028

ABSTRACT

We study the finite-time effects in a quantum Otto cycle where a collective spin system is used as the working fluid. Starting from a simple one-qubit system we analyze the transition to the limit cycle in the case of a finite-time thermalization. If the system consists of a large sample of independent qubits interacting coherently with the heat bath, then the super-radiant equilibration is observed. We show that this phenomenon can boost the power of the engine. Mutual interaction of qubits in the working fluid is modeled by the Lipkin-Meshkov-Glick Hamiltonian. We demonstrate that in this case the quantum phase transitions for the ground and excited states may have a strong negative effect on the performance of the machine. Conversely, by analyzing the work output we can distinguish between the operational regimes with and without a phase transition.

4.
Phys Rev E ; 96(1-1): 012113, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347125

ABSTRACT

We analyze an open quantum system under the influence of more than one environment: a dephasing bath and a probability-absorbing bath that represents a decay channel, as encountered in many models of quantum networks. In our case, dephasing is modeled by random fluctuations of the site energies, while the absorbing bath is modeled with an external lead attached to the system. We analyze under which conditions the effects of the two baths can enter additively the quantum master equation. When such additivity is legitimate, the reduced master equation corresponds to the evolution generated by an effective non-Hermitian Hamiltonian and a Haken-Strobl dephasing super-operator. We find that the additive decomposition is a good approximation when the strength of dephasing is small compared to the bandwidth of the probability-absorbing bath.

5.
Phys Rev E ; 96(1-1): 012153, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29347272

ABSTRACT

We theoretically investigate the impact of the excited state quantum phase transition on the adiabatic dynamics for the Lipkin-Meshkov-Glick model. Using a time-dependent protocol, we continuously change a model parameter and then discuss the scaling properties of the system especially close to the excited state quantum phase transition where we find that these depend on the energy eigenstate. On top, we show that the mean-field dynamics with the time-dependent protocol gives the correct scaling and expectation values in the thermodynamic limit even for the excited states.

6.
Phys Rev E ; 94(3-1): 032135, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739729

ABSTRACT

We investigate heat transport between two thermal reservoirs that are coupled via a large spin composed of N identical two-level systems. One coupling implements the dissipative Dicke superradiance. The other coupling is locally of the pure-dephasing type and requires to go beyond the standard weak-coupling limit by employing a Bogoliubov mapping in the corresponding reservoir. After the mapping, the large spin is coupled to a collective mode with the original pure-dephasing interaction, but the collective mode is dissipatively coupled to the residual oscillators. Treating the large spin and the collective mode as the system, a standard master equation approach is now able to capture the energy transfer between the two reservoirs. Assuming fast relaxation of the collective mode, we derive a coarse-grained rate equation for the large spin only and discuss how the original Dicke superradiance is affected by the presence of the additional reservoir. Our main finding is a cooperatively enhanced rectification effect due to the interplay of supertransmittant heat currents (scaling quadratically with N) and the asymmetric coupling to both reservoirs. For large N, the system can thus significantly amplify current asymmetries under bias reversal, functioning as a heat diode. We also briefly discuss the case when the couplings of the collective spin are locally dissipative, showing that the heat-diode effect is still present.

7.
Article in English | MEDLINE | ID: mdl-26565165

ABSTRACT

In analogy to Brownian computers we explicitly show how to construct stochastic models which mimic the behavior of a general-purpose computer (a Turing machine). Our models are discrete state systems obeying a Markovian master equation, which are logically reversible and have a well-defined and consistent thermodynamic interpretation. The resulting master equation, which describes a simple one-step process on an enormously large state space, allows us to thoroughly investigate the thermodynamics of computation for this situation. Especially in the stationary regime we can well approximate the master equation by a simple Fokker-Planck equation in one dimension. We then show that the entropy production rate at steady state can be made arbitrarily small, but the total (integrated) entropy production is finite and grows logarithmically with the number of computational steps.

8.
J Chem Phys ; 142(13): 134106, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854227

ABSTRACT

We study coherent transport through a double quantum dot. Its two electronic leads induce electronic matter and energy transport and a phonon reservoir contributes further energy exchanges. By treating the system-lead couplings perturbatively, whereas the coupling to vibrations is treated non-perturbatively in a polaron-transformed frame, we derive a thermodynamic consistent low-dimensional master equation. When the number of phonon modes is finite, a Markovian description is only possible when these couple symmetrically to both quantum dots. For a continuum of phonon modes however, also asymmetric couplings can be described with a Markovian master equation. We compute the electronic current and dephasing rate. The electronic current enables transport spectroscopy of the phonon frequency and displays signatures of Franck-Condon blockade. For infinite external bias but finite tunneling bandwidths, we find oscillations in the current as a function of the internal bias due to the electron-phonon coupling. Furthermore, we derive the full fluctuation theorem and show its identity to the entropy production in the system.

9.
Article in English | MEDLINE | ID: mdl-25615044

ABSTRACT

We propose a physically realizable Maxwell's demon device using a spin valve interacting unitarily for a short time with electrons placed on a tape of quantum dots, which is thermodynamically equivalent to the device introduced by Mandal and Jarzynski [D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. USA 109, 11641 (2012)]. The model is exactly solvable and we show that it can be equivalently interpreted as a Brownian ratchet demon. We then consider a measurement-based discrete feedback scheme, which produces identical system dynamics, but possesses a different second law inequality. We show that the second law for discrete feedback control can provide a smaller, equal, or larger bound on the maximum extractable work as compared to the second law involving the tape of bits. Finally, we derive an effective master equation governing the system evolution for Poisson distributed bits on the tape (or measurement times, respectively) and we show that its associated entropy production rate contains the same physical statement as the second law involving the tape of bits.

10.
Article in English | MEDLINE | ID: mdl-24483386

ABSTRACT

We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.

11.
Phys Rev Lett ; 110(4): 040601, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166147

ABSTRACT

We present a physical implementation of a Maxwell demon which consists of a conventional single electron transistor (SET) capacitively coupled to another quantum dot detecting its state. Altogether, the system is described by stochastic thermodynamics. We identify the regime where the energetics of the SET is not affected by the detection, but where its coarse-grained entropy production is shown to contain a new contribution compared to the isolated SET. This additional contribution can be identified as the information flow generated by the "Maxwell demon" feedback in an idealized limit.

12.
Phys Rev Lett ; 109(24): 240402, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23368291

ABSTRACT

We consider thermal transport between two reservoirs coupled by a quantum Ising chain as a model for nonequilibrium physics induced in quantum-critical many-body systems. By deriving rate equations based on exact expressions for the quasiparticle pairs generated during the transport, we observe signatures of the underlying quantum phase transition in the steady-state energy current already at finite and different reservoir temperatures.

13.
Phys Rev Lett ; 107(5): 050501, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867051

ABSTRACT

We propose the manipulation of an isolated qubit by a simple instantaneous closed-loop feedback scheme in which a time-dependent electronic detector current is directly back-coupled into qubit parameters. As a specific detector model, we employ a capacitively coupled single-electron transistor. We demonstrate the stabilization of pure delocalized qubit states above a critical detector-qubit coupling. This electronic purification is independent of the initial qubit state and is accomplished after few electron jumps through the detector. Our simple scheme can be used for the efficient and robust initialization of solid-state qubits in quantum computational algorithms at arbitrary temperatures.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 031111, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21517458

ABSTRACT

For open quantum systems coupled to a thermal bath at inverse temperature ß, it is well known that under the Born, Markov, and secular approximations, the system density matrix will approach the thermal Gibbs state with the bath inverse temperature ß. We generalize this to systems where there exists a conserved quantity (e.g., the total particle number), where for a bath characterized by inverse temperature ß and chemical potential µ, we find equilibration of both temperature and chemical potential. For couplings to multiple baths held at different temperatures and different chemical potentials, we identify a class of systems that equilibrates according to a single hypothetical average but in general nonthermal bath, which may be exploited to generate desired nonthermal states. Under special circumstances, the stationary state may again be described by a unique Boltzmann factor. These results are illustrated by several examples.

15.
Phys Rev Lett ; 100(9): 091301, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352690

ABSTRACT

Electrons moving in a strong periodic electromagnetic field (e.g., laser or undulator) may convert quantum vacuum fluctuations into pairs of entangled photons, which can be understood in terms of the Unruh effect. Apart from verifying this striking phenomenon, the considered effect may allow the construction of a tabletop source for entangled photons ("photon pair laser") and the associated quantum-optics applications in the multi-keV regime with near-future facilities.

16.
J Theor Biol ; 247(3): 554-73, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17466340

ABSTRACT

In order to grasp the features arising from cellular discreteness and individuality, in large parts of cell tissue modelling agent-based models are favoured. The subclass of off-lattice models allows for a physical motivation of the intercellular interaction rules. We apply an improved version of a previously introduced off-lattice agent-based model to the steady-state flow equilibrium of skin. The dynamics of cells is determined by conservative and drag forces, supplemented with delta-correlated random forces. Cellular adjacency is detected by a weighted Delaunay triangulation. The cell cycle time of keratinocytes is controlled by a diffusible substance provided by the dermis. Its concentration is calculated from a diffusion equation with time-dependent boundary conditions and varying diffusion coefficients. The dynamics of a nutrient is also taken into account by a reaction-diffusion equation. It turns out that the analysed control mechanism suffices to explain several characteristics of epidermal homoeostasis formation. In addition, we examine the question of how in silico melanoma with decreased basal adhesion manage to persist within the steady-state flow equilibrium of the skin. Interestingly, even for melanocyte cell cycle times being substantially shorter than for keratinocytes, tiny stochastic effects can lead to completely different outcomes. The results demonstrate that the understanding of initial states of tumour growth can profit significantly from the application of off-lattice agent-based models in computer simulations.


Subject(s)
Computer Simulation , Epidermis/physiology , Keratinocytes/physiology , Melanocytes/physiology , Animals , Cell Communication/physiology , Cell Movement/physiology , Homeostasis , Humans , Melanoma/pathology , Models, Biological , Skin Neoplasms/pathology , Stochastic Processes
17.
Phys Rev Lett ; 97(12): 121302, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-17025949

ABSTRACT

We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are perfectly correlated. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities. Finally, the corrections due to the birefringent nature of the QED vacuum at such ultrahigh fields are discussed.

18.
Philos Trans A Math Phys Eng Sci ; 364(1843): 1443-64, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16766354

ABSTRACT

We study multicellular tumour spheroids with a continuum model based on partial differential equations (PDEs). The model includes viable and necrotic cell densities, as well as oxygen and glucose concentrations. Viable cells consume nutrients and become necrotic below critical nutrient concentrations. Proliferation of viable cells is contact-inhibited if the total cellular density locally exceeds volume carrying capacity. The model is discussed under the assumption of spherical symmetry. Unknown model parameters are determined by simultaneously fitting the cell number to several experimental growth curves for different nutrient concentrations. The outcome of the PDE model is compared with an analogous off-lattice agent-based model for tumour growth. It turns out that the numerically more efficient PDE model suffices to explain the macroscopic growth data. As in the agent-based model, we find that the experimental growth curves are only reproduced when a necrotic core develops. However, evaluation of morphometric properties yields differences between the models and the experiment.


Subject(s)
Models, Biological , Neoplasms/pathology , Neoplasms/physiopathology , Spheroids, Cellular/pathology , Spheroids, Cellular/physiology , Tumor Cells, Cultured/pathology , Tumor Cells, Cultured/physiology , Animals , Apoptosis , Cell Proliferation , Cell Survival , Computer Simulation , Glucose/metabolism , Humans , Oxygen/metabolism
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(5 Pt 1): 051910, 2005 May.
Article in English | MEDLINE | ID: mdl-16089574

ABSTRACT

We study multicellular tumor spheroids by introducing a new three-dimensional agent-based Voronoi-Delaunay hybrid model. In this model, the cell shape varies from spherical in thin solution to convex polyhedral in dense tissues. The next neighbors of the cells are provided by a weighted Delaunay triangulation with on average linear computational complexity. The cellular interactions include direct elastic forces and cell-cell as well as cell-matrix adhesion. The spatiotemporal distribution of two nutrients--oxygen and glucose--is described by reaction-diffusion equations. Viable cells consume the nutrients, which are converted into biomass by increasing the cell size during the G1 phase. We test hypotheses on the functional dependence of the uptake rates and use computer simulations to find suitable mechanisms for the induction of necrosis. This is done by comparing the outcome with experimental growth curves, where the best fit leads to an unexpected ratio of oxygen and glucose uptake rates. The model relies on physical quantities and can easily be generalized towards tissues involving different cell types. In addition, it provides many features that can be directly compared with the experiment.


Subject(s)
Cell Communication , Glucose/metabolism , Models, Biological , Neoplasms/pathology , Neoplasms/physiopathology , Oxygen/metabolism , Spheroids, Cellular/pathology , Animals , Apoptosis , Cell Adhesion , Cell Proliferation , Cell Survival , Computer Simulation , Elasticity , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...