Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Science ; 383(6687): 1118-1122, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38359104

ABSTRACT

Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.

2.
Sci Total Environ ; 885: 163751, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37146821

ABSTRACT

Measured salt compositions in dust collected over roughly the last decade from surfaces of in-service stainless-steel alloys at four locations around the United States are presented, along with the predicted brine compositions that would result from deliquescence of these salts. The salt compositions vary greatly from ASTM seawater and from laboratory salts (i.e., NaCl or MgCl2) commonly used on corrosion testing. The salts contained relatively high amounts of sulfates and nitrates, evolved to basic pH values, and exhibited deliquescence relative humidity values (RH) higher than seawater. Additionally, inert dust in components were quantified and considerations for laboratory testing are presented. The observed dust compositions are discussed in terms of the potential corrosion behavior and are compared to commonly used accelerated testing protocols. Finally, ambient weather conditions and their influence on diurnal fluctuations in temperature (T) and RH on heated metal surfaces are evaluated and a relevant diurnal cycle for laboratory testing a heated surface has been developed. Suggestions for future accelerated tests are proposed that include exploration of the effects of inert dust particles on atmospheric corrosion, chemistry considerations, and realistic diurnal fluctuations in T and RH. Understanding mechanisms in both realistic and accelerated environments will allow development of a corrosion factor (i.e., scaling factor) for the extrapolation of laboratory-scale test results to real world applications.

3.
Sci Total Environ ; 824: 154462, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35278544

ABSTRACT

Thermodynamic modeling has been used to predict chemical compositions of brines formed by the deliquescence of sea salt aerosols. Representative brines have been mixed, and physical and chemical properties have been measured over a range of temperatures. Brine properties are discussed in terms of atmospheric corrosion of austenitic stainless steel, using spent nuclear fuel dry storage canisters as an example. After initial loading with spent fuel, during dry storage, the canisters cool over time, leading to increased surface relative humidities and evolving brine chemistries and properties. These parameters affect corrosion kinetics and damage distributions, and may offer important constraints on the expected timing, rate, and long-term impacts of canister corrosion.


Subject(s)
Salts , Aerosols , Humidity , Temperature
4.
Phys Rev Lett ; 124(23): 236001, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603165

ABSTRACT

Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.

5.
Science ; 367(6474): 179-182, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31919219

ABSTRACT

Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.

6.
Allergy ; 71(5): 728-32, 2016 05.
Article in English | MEDLINE | ID: mdl-26836363

ABSTRACT

Food allergies are believed to be on the rise, and currently, management relies on the avoidance of the food. Hen's egg allergy is after cow's milk allergy the most common food allergy; eggs are used in many food products and thus difficult to avoid. A technological process using a combination of enzymatic hydrolysis and heat treatment was designed to produce modified hen's egg with reduced allergenic potential. Biochemical (SDS-PAGE, Size exclusion chromatography and LC-MS/MS) and immunological (ELISA, immunoblot, RBL-assays, animal model) analysis showed a clear decrease in intact proteins as well as a strong decrease of allergenicity. In a clinical study, 22 of the 24 patients with a confirmed egg allergy who underwent a double-blind food challenge with the hydrolysed egg remained completely free of symptoms. Hydrolysed egg products may be beneficial as low-allergenic foods for egg-allergic patients to extent their diet.


Subject(s)
Allergens/immunology , Egg Hypersensitivity/immunology , Egg Proteins/adverse effects , Eggs/adverse effects , Immune Tolerance , Animals , Antibody Specificity/immunology , Chickens , Child, Preschool , Disease Models, Animal , Egg Proteins/chemistry , Female , Humans , Hydrolysis , Immunoglobulin E/immunology , Infant , Male , Muramidase/chemistry , Rats
7.
Nat Commun ; 5: 3245, 2014.
Article in English | MEDLINE | ID: mdl-24488203

ABSTRACT

Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C60 crystallite size of ~4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process.

9.
Nat Commun ; 2: 280, 2011.
Article in English | MEDLINE | ID: mdl-21505436

ABSTRACT

A strong electron-hole exchange interaction (EI) in semiconductor nanocrystals (NCs) gives rise to a large (up to tens of meV) splitting between optically active ('bright') and optically passive ('dark') excitons. This dark-bright splitting has a significant effect on the optical properties of band-edge excitons and leads to a pronounced temperature and magnetic field dependence of radiative decay. Here we demonstrate a nanoengineering-based approach that provides control over EI while maintaining nearly constant emission energy. We show that the dark-bright splitting can be widely tuned by controlling the electron-hole spatial overlap in core-shell CdSe/CdS NCs with a variable shell width. In thick-shell samples, the EI energy reduces to <250 µeV, which yields a material that emits with a nearly constant rate over temperatures from 1.5 to 300 K and magnetic fields up to 7 T. The EI-manipulation strategies demonstrated here are general and can be applied to other nanostructures with variable electron-hole overlap.


Subject(s)
Electrons , Models, Theoretical , Nanoparticles/chemistry , Nanotechnology/methods , Quantum Dots , Cadmium Compounds/chemistry , Chemical Engineering/methods , Electromagnetic Fields , Fluorescence , Microscopy, Electron, Transmission , Selenium Compounds/chemistry , Sulfides/chemistry , Temperature
10.
Phys Rev Lett ; 105(6): 067403, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20868011

ABSTRACT

We measure the photoluminescence lifetime τ of excitons in colloidal PbSe nanocrystals (NCs) at low temperatures to 270 mK and in high magnetic fields to 15 T. For all NCs, τ increases sharply below 10 K but saturates by 500 mK. In contrast to the usual picture of well-separated "bright" and "dark" exciton states (found, e.g., in CdSe NCs), these dynamics fit remarkably well to a system having two exciton states with comparable--but small--oscillator strengths that are separated by only 300-900 µeV depending on NC size. Importantly, magnetic fields reduce τ below 10 K, consistent with field-induced mixing between the two states. Magnetic-circular dichroism studies reveal exciton g factors from 2-5, and magnetophotoluminescence shows >10% circularly polarized emission.

11.
Biosens Bioelectron ; 24(7): 2239-45, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19135351

ABSTRACT

Intensive insulin therapy reduces mortality and morbidity in critically ill patients but imposes great demands on medical staff who must take frequent blood samples for the determination of glucose levels. A solution to this resourcing problem would be provided by an automated blood monitoring system. The aim of the present clinical study was to evaluate such a system comprising an automatic blood sampling unit linked to a glucose biosensor. Our approach was to determine the correlation and system error of the sampling unit alone and of the combined system with respect to reference levels over 12h in humans. Two venous cannulae were inserted to connect the automatic and reference systems to the subjects. Blood samples were taken at 15 and 30 min intervals. The median Pearson coefficient of correlation between manually and automatically withdrawn blood samples was 0.982 for the sampling unit alone and 0.950 for the complete system. The biosensor had a linear range up to 20 mmoll(-1) and a 95% response time of <2 min. Clark Error Grid analysis showed that 96.93% of the data (228 data pairs) was in zone A and 3.07% in zone B. Insulin Titration Error Grid analysis suggested an acceptable treatment in 99.56% of cases. Implementation of a "Keep Vein Open" saline infusion into the automated blood sampling system reduced blood withdrawal failures through occluded catheters fourfold. In summary, automated blood sampling from a peripheral vein coupled with automatic glucose determination is a promising alternative to frequent manual blood sampling.


Subject(s)
Biosensing Techniques/instrumentation , Blood Chemical Analysis/instrumentation , Blood Glucose/analysis , Catheterization/instrumentation , Flow Injection Analysis/instrumentation , Phlebotomy/instrumentation , Robotics/instrumentation , Blood Chemical Analysis/methods , Catheterization/methods , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Humans , Phlebotomy/methods , Reproducibility of Results , Sensitivity and Specificity
12.
Fungal Genet Biol ; 43(8): 545-59, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16697669

ABSTRACT

Coccidioides posadasii is a dimorphic fungal pathogen that grows as a filamentous saprobe in the soil and as endosporulating spherules within the host. To identify genes specific to the pathogenic phase of Co. posadasii, we carried out a large-scale study of gene expression in two isolates of the species. From the sequenced Co. posadasii genome, we chose 1,000 open reading frames to construct a 70-mer microarray. RNA was recovered from both isolates at three life-cycle phases: hyphae, presegmented spherules, and spherules releasing endospores. Comparative hybridizations were conducted in a circuit design, permitting comparison between both isolates at all three life-cycle phases, and among all life-cycle phases for each isolate. By using this approach, we identified 92 genes that were differentially expressed between pathogenic and saprobic phases in both fungal isolates, and 43 genes with consistent differential expression between the two parasitic developmental phases. Genes with elevated expression in the pathogenic phases of both isolates included a number of genes that were involved in the response to environmental stress as well as in the metabolism of lipids. The latter observation is in agreement with previous studies demonstrating that spherules contain a higher proportion of lipids than saprobic phase tissue. Intriguingly, we discovered statistically significant and divergent levels of gene expression between the two isolates profiled for 64 genes. The results suggest that incorporating more than one isolate in the experimental design offers a means of categorizing the large collection of candidate genes that transcriptional profiling typically identifies into those that are strain-specific and those that characterize the entire species.


Subject(s)
Coccidioides/genetics , Gene Expression Regulation, Fungal , Adaptation, Biological , Coccidioides/cytology , Coccidioides/growth & development , Coccidioides/isolation & purification , Gene Expression Profiling , Gene Expression Regulation, Developmental , Logistic Models , Oligonucleotide Array Sequence Analysis , Species Specificity
13.
Epidemiol Infect ; 134(1): 143-6, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16409661

ABSTRACT

A family cluster of three cases of Escherichia coli O157 infection was identified in France. Two cases developed haemolytic-uraemic syndrome. The source was fresh unpasteurized goats' cheese, produced by an independent producer. Three E. coli O157 strains, isolated from one HUS case and faeces of one cow and one goat, were indistinguishable by toxin type and PFGE pattern.


Subject(s)
Cheese/microbiology , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli O157/pathogenicity , Food Contamination , Adult , Animals , Child, Preschool , Female , France/epidemiology , Goats , Hemolytic-Uremic Syndrome/etiology , Humans , Infant , Male
14.
J Phys Chem B ; 109(20): 10194-203, 2005 May 26.
Article in English | MEDLINE | ID: mdl-16852236

ABSTRACT

We have measured the X-ray absorption (XA) spectrum of liquid (298 K) methanol at the oxygen and carbon K edges. The 4a(1) orbital at the O K edge exhibits a pronounced sensitivity to the formation of intermolecular hydrogen bonds, with significant differences observed between the vapor and bulk spectra, whereas the C K edge reveals only subtle corresponding spectral changes. Comparison with DFT computed spectra of model methanol clusters indicates that the bulk liquid comprises long chains (n > 6) and rings of hydrogen-bonded monomers.

15.
Med Mycol ; 42(3): 189-216, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15283234

ABSTRACT

Coccidioides is a fungal pathogen of humans which can cause a life-threatening respiratory disease in immunocompetent individuals. Recurrent epidemics of coccidioidal infections in Southwestern United States has raised the specter of awareness of this soil-borne microbe, particularly among residents of Arizona and Southern California, and has galvanized research efforts to develop a human vaccine against coccidioidomycosis. In this review, we discuss the rationale for such a vaccine, examine the features of host innate and acquired immune response to Coccidioides infection, describe strategies used to identify and evaluate vaccine candidates, and provide an update on progress toward development of a vaccine against this endemic pathogen.


Subject(s)
Coccidioides/immunology , Coccidioidomycosis/immunology , Coccidioidomycosis/prevention & control , Fungal Vaccines , Animals , Coccidioides/genetics , Coccidioides/pathogenicity , Coccidioidomycosis/epidemiology , Coccidioidomycosis/microbiology , Disease Models, Animal , Drug Evaluation, Preclinical , Fungal Vaccines/immunology , Humans , Mice , Vaccination , Vaccines, Attenuated/immunology
16.
Phys Rev Lett ; 92(18): 186601, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15169518

ABSTRACT

We demonstrate for the first time that impact ionization (II) (the inverse of Auger recombination) occurs with very high efficiency in semiconductor nanocrystals (NCs). Interband optical excitation of PbSe NCs at low pump intensities, for which less than one exciton is initially generated per NC on average, results in the formation of two or more excitons (carrier multiplication) when pump photon energies are more than 3 times the NC band gap energy. The generation of multiexcitons from a single photon absorption event is observed to take place on an ultrafast (picosecond) time scale and occurs with up to 100% efficiency depending upon the excess energy of the absorbed photon. Efficient II in NCs can be used to considerably increase the power conversion efficiency of NC-based solar cells.

17.
J Microsc ; 214(Pt 1): 27-35, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15049865

ABSTRACT

Dynamic etching methods for fabricating fibre optic tips are explored and modelled. By vertically translating the fibre during etching by an HF solution under an organic protective layer, a variety of tip shapes were created. The probe taper lengths, cone angles and geometrical probe shapes were measured in order to evaluate the dynamic meniscus etching process. Fibre motion, etching rate, meniscus distortion and etching time were all found to be important variables that can be used to control the final probe shape.


Subject(s)
Fiber Optic Technology/instrumentation , Microscopy, Scanning Probe/instrumentation , Equipment Design , Hydrofluoric Acid , Microscopy, Electron, Scanning , Models, Structural , Surface Properties
18.
Opt Lett ; 28(15): 1296-8, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12906068

ABSTRACT

Electrical poling induces polar ordering of molecules in a grating that has been holographically inscribed on a thin film of polymer with azobenzene side chains. The resulting chi2 grating, seen by second-harmonic-generation (SHG) near-field scanning optical microscopy, can have a periodic structure that is significantly different from the topographical image. The far-field linear and SHG diffration patterns correlate well with the grating structures. Poling of the thin-film grating, which presumably has photodriven nonuniform material properties within each period, leads to the more complex structure of the chi2 grating.

19.
Med Mycol ; 40(1): 35-44, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11860012

ABSTRACT

Coccidioides immitis, the causative agent of San Joaquin Valley fever (coccidioidomycosis), produces a urease which has been suggested to contribute to the virulence of this fungal pathogen. Urease catalyzes the hydrolysis of urea and has been proposed to at least partly account for alkalinity of the microenvironment in which C. immitis grows due to the release of ammonia and ammonium ions. The C. immitis urease was purified to homogeneity (1048-fold) from the mycelial cytosol by chromatographic fractionation. The sequence of 12 N-terminal amino-acid residues of the purified, native polypeptide was identical to that predicted by the translated urease gene sequence which has been reported. The isolated enzyme exhibited a specific activity in the presence of urea of 1750 micromol min(-1) mg(-1) protein, has a native molecular mass of 450 kDa, revealed a Km for urea of 4.1 mM, had a pH optimum of 8.0 and is heat stable. Hydroxyurea, acetohydroxamic acid (AHA) and boric acid each inhibited activity of the purified enzyme. Urease activity was enhanced by the presence of 5-10 mM concentrations of Mg2+ or Mn2+, but inhibited by Li+, Ni2+, Cu2+ or Zn2+. The reversible urease inhibitor, AHA, blocked enzyme activity in the crude mycelial cytosolic fraction when added at a concentration of 10 mM. On the other hand, 10 mM AHA added to 4-day-old mycelial cultures only partially decreased the amount of ammonium detected in the culture medium. It is evident, therefore, that C. immitis urease activity does not account for the total amount of ammonia secreted during in vitro growth of the pathogen. Other metabolic sources of ammonia, which may also contribute to the virulence of C. immitis, are under investigation.


Subject(s)
Coccidioides/enzymology , Urease/isolation & purification , Amino Acid Sequence , Ammonia/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Weight , Urease/antagonists & inhibitors , Urease/metabolism
20.
Anal Chem ; 73(21): 5015-9, 2001 Nov 01.
Article in English | MEDLINE | ID: mdl-11721893

ABSTRACT

The mechanism of tuning fork-based shear-force near-field scanning optical microscopy is investigated to determine optimal experimental conditions for imaging soft samples immersed in liquid. High feedback sensitivity and stability are obtained when only the fiber probe, i.e., excluding the tuning fork prongs, is immersed in solution, which also avoids electrical shorting in conductive (i.e., buffer) solutions. Images of MEH-PPV were obtained with comparable spatial resolution in both air and water. High optical resolution (approximately160 nm fwhm) was observed.


Subject(s)
Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Solvents , Ethylenes/chemistry , Hexanols/chemistry , Methanol/analogs & derivatives , Methanol/chemistry , Phenol/chemistry , Polymers/chemistry , Sensitivity and Specificity , Stress, Mechanical , Vibration , Vinyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...