Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Skeletal Radiol ; 52(7): 1313-1320, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36585514

ABSTRACT

OBJECTIVE: The aims of this study were to visualize and quantify relative bone positions in the feet of individuals with cerebral palsy (CP) with a foot deformity and compare bone positions with those of typically developed (TD) controls. MATERIALS AND METHODS: Weight-bearing CT images of 14 individuals with CP scheduled for tendon transfer and/or bony surgery and of 20 TD controls were acquired on a Planmed Verity WBCT scanner. Centroids of the navicular and calcaneus with respect to the talus were used to quantify foot deformities. All taluses were aligned and the size and dimensions of the individuals' talus were scaled to correct for differences in bone sizes. In order to visualize and quantify variations in relative bone positions, 95% CI ellipsoids and standard deviations in its principle X-, Y-, and Z-directions were determined. RESULTS: In individuals with CP (age 11-17), a large variation in centroid positions was observed compared to data of TD controls. Radiuses of the ellipsoids, representing the standard deviations of the 95% CI in the principle X-, Y-, and Z-directions, were larger in individuals with CP compared to TD controls for both the calcaneus (3.16 vs 1.86 mm, 4.26 vs 2.60 mm, 9.19 vs 3.60 mm) and navicular (4.63 vs 1.55 mm, 5.18 vs 2.10 mm, 16.07 vs 4.16 mm). CONCLUSION: By determining centroids of the calcaneus and navicular with respect to the talus on WBCT images, normal and abnormal relative bone positions can be visualized and quantified in individuals with CP with various foot deformities.


Subject(s)
Calcaneus , Cerebral Palsy , Foot Deformities , Talus , Humans , Child , Adolescent , Cerebral Palsy/complications , Cerebral Palsy/diagnostic imaging , Cerebral Palsy/surgery , Calcaneus/diagnostic imaging , Foot Deformities/diagnostic imaging , Weight-Bearing , Tomography, X-Ray Computed
2.
Med Eng Phys ; 69: 147-152, 2019 07.
Article in English | MEDLINE | ID: mdl-31147203

ABSTRACT

Computed tomography (CT) imaging can be used to determine bone pose, sometimes combined with skin-mounted markers. For this specific application, a lower radiation dose than the conventional clinical dose might suffice. This study aims to determine how lowering the radiation dose of a CT-scan of the ankle and foot affects the precision of detecting bone pose and marker position. Radiation dose is proportional to tube charge. Hence, an adult cadaveric leg was scanned 10 times at four different tube charges (150, 75, 50 and 20 mAs) with a Philips Brilliance 64 CT scanner. Precision of detecting bone and marker position at 50 mAs was not significantly different from 75 mAs and from the clinically used 150 mAs, but higher than 20 mAs. Furthermore, no differences of the precision in detecting bone orientation were found. These results indicate that the radiation dose can be reduced by a factor 3 compared to the clinically usual radiation dose, without affecting the precision of detecting bone pose and marker position in the foot and ankle.


Subject(s)
Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Fiducial Markers , Image Processing, Computer-Assisted , Radiation Dosage , Tomography, X-Ray Computed/standards , Aged , Foot , Humans , Leg , Male , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...