Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 203(13): e0012621, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33875546

ABSTRACT

In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Protein Domains , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Protein Binding
2.
J Bacteriol ; 202(19)2020 09 08.
Article in English | MEDLINE | ID: mdl-32778557

ABSTRACT

Myxococcus xanthus arranges into two morphologically distinct biofilms depending on its nutritional status, i.e., coordinately spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. A secreted polysaccharide, referred to as exopolysaccharide (EPS), is a structural component of both biofilms and is also important for type IV pilus-dependent motility and fruiting body formation. Here, we characterize the biosynthetic machinery responsible for EPS biosynthesis using bioinformatics, genetics, heterologous expression, and biochemical experiments. We show that this machinery constitutes a Wzx/Wzy-dependent pathway dedicated to EPS biosynthesis. Our data support that EpsZ (MXAN_7415) is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for the initiation of the repeat unit synthesis. Heterologous expression experiments support that EpsZ has galactose-1-P transferase activity. Moreover, MXAN_7416, renamed WzxEPS, and MXAN_7442, renamed WzyEPS, are the Wzx flippase and Wzy polymerase responsible for translocation and polymerization of the EPS repeat unit, respectively. In this pathway, EpsV (MXAN_7421) also is the polysaccharide copolymerase and EpsY (MXAN_7417) the outer membrane polysaccharide export (OPX) protein. Mutants with single in-frame deletions in the five corresponding genes had defects in type IV pilus-dependent motility and a conditional defect in fruiting body formation. Furthermore, all five mutants were deficient in type IV pilus formation, and genetic analyses suggest that EPS and/or the EPS biosynthetic machinery stimulates type IV pilus extension. Additionally, we identify a polysaccharide biosynthesis gene cluster, which together with an orphan gene encoding an OPX protein make up a complete Wzx/Wzy-dependent pathway for synthesis of an unknown polysaccharide.IMPORTANCE The secreted polysaccharide referred to as exopolysaccharide (EPS) has important functions in the social life cycle of M. xanthus; however, little is known about how EPS is synthesized. Here, we characterized the EPS biosynthetic machinery and showed that it makes up a Wzx/Wzy-dependent pathway for polysaccharide biosynthesis. Mutants lacking a component of this pathway had reduced type IV pilus-dependent motility and a conditional defect in development. These analyses also suggest that EPS and/or the EPS biosynthetic machinery is important for type IV pilus formation.


Subject(s)
Biosynthetic Pathways/genetics , Biosynthetic Pathways/physiology , Myxococcus xanthus/genetics , Myxococcus xanthus/metabolism , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/genetics , Biofilms , Fimbriae, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Lipopolysaccharides , Multigene Family , Myxococcus xanthus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...