Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Magn Reson ; 362: 107690, 2024 May.
Article in English | MEDLINE | ID: mdl-38692250

ABSTRACT

This research report describes a novel surface dielectric resonator (SDR) with a flexible connector for in vivo electron paramagnetic resonance (EPR) spectroscopy. Contrary to the conventional cavity or surface loop-gap resonators, the newly developed SDR is constructed from a ceramic dielectric material, and it is tuned to operate at the L-band frequency band (1.15 GHz) in continuous-wave mode. The SDR is designed to be critically coupled and capable of working with both very lossy samples, such as biological tissues, and non-lossy materials. The SDR was characterized using electromagnetic field simulations, assessed for sensitivity with a B1 field-perturbation method, and validated with tissue phantoms using EPR measurements. The results showed remarkably higher sensitivity in lossy tissue phantoms than the previously reported multisegment surface-loop resonators. The new SDR can provide potential new insights for advancements in the application of in vivo EPR spectroscopy for biological measurements, including clinical oximetry.


Subject(s)
Electromagnetic Fields , Equipment Design , Phantoms, Imaging , Electron Spin Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Reproducibility of Results , Oximetry/instrumentation , Oximetry/methods
2.
Radiat Res ; 200(3): 223-231, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37590482

ABSTRACT

Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.


Subject(s)
Neoplasms , Radiation Injuries , Mice , Animals , Mice, Inbred C57BL , Skin/radiation effects , Neoplasms/pathology , Disease Models, Animal , Radiation Injuries/pathology , Radiotherapy Dosage
4.
Int J Radiat Oncol Biol Phys ; 112(4): 1023-1032, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34762969

ABSTRACT

PURPOSE: To present a Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) for a modified ultrahigh dose-rate electron FLASH radiation therapy (eFLASH-RT) linear accelerator (LINAC) using clinical accessories and geometry. METHODS AND MATERIALS: The gantry head without scattering foils or targets, representative of the LINAC modifications, was modeled in the Geant4-based GAMOS MC toolkit. The energy spectrum (σE) and beam source emittance cone angle (θcone) were varied to match the calculated open-field central-axis percent depth dose (PDD) and lateral profiles with Gafchromic film measurements. The beam model and its Eclipse configuration were validated with measured profiles of the open field and nominal fields for clinical applicators. An MC forward dose calculation was conducted for a mouse whole-brain treatment, and an eFLASH-RT plan was compared with a conventional (Conv-) RT electron plan in Eclipse for a human patient with metastatic renal cell carcinoma. RESULTS: The eFLASH beam model agreed best with measurements at σE = 0.5 MeV and θcone = 3.9° ± 0.2°. The model and its Eclipse configuration were validated to clinically acceptable accuracy (the absolute average error was within 1.5% for in-water lateral, 3% for in-air lateral, and 2% for PDDs). The forward calculation showed adequate dose delivery to the entire mouse brain while sparing the organ at risk (lung). The human patient case demonstrated the planning capability with routine accessories to achieve an acceptable plan (90% of the tumor volume receiving 95% and 90% of the prescribed dose for eFLASH and Conv-RT, respectively). CONCLUSIONS: To our knowledge, this is the first functional beam model commissioned in a clinical TPS for eFLASH-RT enabling planning and evaluation with minimal deviation from the Conv-RT workflow. It facilitates the clinical translation because eFLASH-RT and Conv-RT plan quality were comparable for a human patient involving complex geometries and tissue heterogeneity. The methods can be expanded to model other eFLASH irradiators with different beam characteristics.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Algorithms , Animals , Electrons , Humans , Mice , Monte Carlo Method , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
5.
Magn Reson Med ; 87(3): 1621-1637, 2022 03.
Article in English | MEDLINE | ID: mdl-34719047

ABSTRACT

PURPOSE: Electron paramagnetic resonance oximetry using the OxyChip as an implantable oxygen sensor can directly and repeatedly measure tissue oxygen levels. A phase I, first-in-human clinical study has established the safety and feasibility of using OxyChip for reliable and repeated measurements of oxygen levels in a variety of tumors and treatment regimens. A limitation in these studies is the inability to easily locate and identify the implanted probes in the tissue, particularly in the long term, thus limiting spatial/anatomical registration of the implant for proper interpretation of the oxygen data. In this study, we have developed and evaluated an enhanced oxygen-sensing probe embedded with gold nanoparticles (GNP), called the OxyChip-GNP, to enable visualization of the sensor using routine clinical imaging modalities. METHODS: In vitro characterization, imaging, and histopathology studies were carried out using tissue phantoms, excised tissues, and in vivo animal models (mice and rats). RESULTS: The results demonstrated a substantial enhancement of ultrasound and CT contrast using the OxyChip-GNP without compromising its electron paramagnetic resonance and oxygen-sensing properties or biocompatibility. CONCLUSIONS: The OxyChips embedded with gold nanoparticles (OxyChip-GNP) can be readily identified in soft tissues using standard clinical imaging modalities such as CT, cone beam-CT, or ultrasound imaging while maintaining its capability to make repeated in vivo measurements of tissue oxygen levels over the long term. This unique capability of the OxyChip-GNP facilitates precisely localized in vivo oxygen measurements in the clinical setting.


Subject(s)
Gold , Metal Nanoparticles , Animals , Electron Spin Resonance Spectroscopy , Mice , Oximetry , Oxygen , Rats
6.
Appl Magn Reson ; 52(10): 1321-1342, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744319

ABSTRACT

OBJECTIVES: (1) Summarize revisions made to the implantable resonator (IR) design and results of testing to characterize biocompatibility;(2) Demonstrate safety of implantation and feasibility of deep tissue oxygenation measurement using electron paramagnetic resonance (EPR) oximetry. STUDY DESIGN: In vitro testing of the revised IR and in vivo implantation in rabbit brain and leg tissues. METHODS: Revised IRs were fabricated with 1-4 OxyChips with a thin wire encapsulated with two biocompatible coatings. Biocompatibility and chemical characterization tests were performed. Rabbits were implanted with either an IR with 2 oxygen sensors or a biocompatible-control sample in both the brain and hind leg. The rabbits were implanted with IRs using a catheter-based, minimally invasive surgical procedure. EPR oximetry was performed for rabbits with IRs. Cohorts of rabbits were euthanized and tissues were obtained at 1 week, 3 months, and 9 months after implantation and examined for tissue reaction. RESULTS: Biocompatibility and toxicity testing of the revised IRs demonstrated no abnormal reactions. EPR oximetry from brain and leg tissues were successfully executed. Blood work and histopathological evaluations showed no significant difference between the IR and control groups. CONCLUSIONS: IRs were functional for up to 9 months after implantation and provided deep tissue oxygen measurements using EPR oximetry. Tissues surrounding the IRs showed no more tissue reaction than tissues surrounding the control samples. This pre-clinical study demonstrates that the IRs can be safely implanted in brain and leg tissues and that repeated, non-invasive, deep-tissue oxygen measurements can be obtained using in vivo EPR oximetry.

7.
Front Oncol ; 11: 743256, 2021.
Article in English | MEDLINE | ID: mdl-34660306

ABSTRACT

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

8.
JAMA Oncol ; 7(9): 1324-1332, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34323922

ABSTRACT

IMPORTANCE: Non-small cell lung cancer (NSCLC) has relatively poor outcomes. Metformin has significant data supporting its use as an antineoplastic agent. OBJECTIVE: To compare chemoradiation alone vs chemoradiation and metformin in stage III NSCLC. DESIGN, SETTING, AND PARTICIPANTS: The NRG-LU001 randomized clinical trial was an open-label, phase 2 study conducted from August 24, 2014, to December 15, 2016. Patients without diabetes who were diagnosed with unresectable stage III NSCLC were stratified by performance status, histology, and stage. The setting was international and multi-institutional. This study examined prespecified endpoints, and data were analyzed on an intent-to-treat basis. Data were analyzed from February 25, 2019, to March 6, 2020. INTERVENTIONS: Chemoradiation and consolidation chemotherapy with or without metformin. MAIN OUTCOMES AND MEASURES: The primary outcome was 1-year progression-free survival (PFS), designed to detect 15% improvement in 1-year PFS from 50% to 65% (hazard ratio [HR], 0.622). Secondary end points included overall survival, time to local-regional recurrence, time to distant metastasis, and toxicity per Common Terminology Criteria for Adverse Events, version 4.03. RESULTS: A total of 170 patients were enrolled, with 167 eligible patients analyzed after exclusions (median age, 64 years [interquartile range, 58-72 years]; 97 men [58.1%]; 137 White patients [82.0%]), with 81 in the control group and 86 in the metformin group. Median follow-up was 27.7 months (range, 0.03-47.21 months) among living patients. One-year PFS rates were 60.4% (95% CI, 48.5%-70.4%) in the control group and 51.3% (95% CI, 39.8%-61.7%) in the metformin group (HR, 1.15; 95% CI, 0.77-1.73; P = .24). Clinical stage was the only factor significantly associated with PFS on multivariable analysis (HR, 1.79; 95% CI, 1.19-2.69; P = .005). One-year overall survival was 80.2% (95% CI, 69.3%-87.6%) in the control group and 80.8% (95% CI, 70.2%-87.9%) in the metformin group. There were no significant differences in local-regional recurrence or distant metastasis at 1 or 2 years. No significant difference in adverse events was observed between treatment groups. CONCLUSIONS AND RELEVANCE: In this randomized clinical trial, the addition of metformin to concurrent chemoradiation was well tolerated but did not improve survival among patients with unresectable stage III NSCLC. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02186847.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chemoradiotherapy , Lung Neoplasms , Metformin , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Chemoradiotherapy/adverse effects , Female , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Metformin/adverse effects , Middle Aged , Neoplasm Staging
9.
Adv Exp Med Biol ; 1269: 301-308, 2021.
Article in English | MEDLINE | ID: mdl-33966234

ABSTRACT

Clinical measurements of O2 in tissues will inevitably provide data that are at best aggregated and will not reflect the inherent heterogeneity of O2 in tissues over space and time. Additionally, the nature of all existing techniques to measure O2 results in complex sampling of the volume that is sensed by the technique. By recognizing these potential limitations of the measures, one can focus on the very important and useful information that can be obtained from these techniques, especially data about factors that can change levels of O2 and then exploit these changes diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2.


Subject(s)
Oxygen Consumption , Oxygen , Blood Gas Analysis
10.
Sci Rep ; 11(1): 4422, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627688

ABSTRACT

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

11.
Int J Radiat Oncol Biol Phys ; 109(5): 1627-1637, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33227443

ABSTRACT

PURPOSE: The value of Cherenkov imaging as an on-patient, real-time, treatment delivery verification system was examined in a 64-patient cohort during routine radiation treatments in a single-center study. METHODS AND MATERIALS: Cherenkov cameras were mounted in treatment rooms and used to image patients during their standard radiation therapy regimen for various sites, predominantly for whole breast and total skin electron therapy. For most patients, multiple fractions were imaged, with some involving bolus or scintillators on the skin. Measures of repeatability were calculated with a mean distance to conformity (MDC) for breast irradiation images. RESULTS: In breast treatments, Cherenkov images identified fractions when treatment delivery resulted in dose on the contralateral breast, the arm, or the chin and found nonideal bolus positioning. In sarcoma treatments, safe positioning of the contralateral leg was monitored. For all 199 imaged breast treatment fields, the interfraction MDC was within 7 mm compared with the first day of treatment (with only 7.5% of treatments exceeding 3 mm), and all but 1 fell within 7 mm relative to the treatment plan. The value of imaging dose through clear bolus or quantifying surface dose with scintillator dots was examined. Cherenkov imaging also was able to assess field match lines in cerebral-spinal and breast irradiation with nodes. Treatment imaging of other anatomic sites confirmed the value of surface dose imaging more broadly. CONCLUSIONS: Daily radiation therapy can be imaged routinely via Cherenkov emissions. Both the real-time images and the posttreatment, cumulative images provide surrogate maps of surface dose delivery that can be used for incident discovery and/or continuous improvement in many delivery techniques. In this initial 64-patient cohort, we discovered 6 minor incidents using Cherenkov imaging; these otherwise would have gone undetected. In addition, imaging provides automated, quantitative metrics useful for determining the quality of radiation therapy delivery.


Subject(s)
Luminescence , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Optical Imaging/methods , Particle Accelerators , Patient Positioning , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Cohort Studies , Craniospinal Irradiation/methods , Dose Fractionation, Radiation , Female , Humans , Male , Optical Imaging/instrumentation , Radiotherapy/methods , Radiotherapy Planning, Computer-Assisted , Sarcoma/diagnostic imaging , Sarcoma/radiotherapy , Skin/diagnostic imaging , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/radiotherapy
12.
Front Oncol ; 10: 572060, 2020.
Article in English | MEDLINE | ID: mdl-33194670

ABSTRACT

Introduction: Tumor hypoxia confers both a poor prognosis and increased resistance to oncologic therapies, and therefore, hypoxia modification with reliable oxygen profiling during anticancer treatment is desirable. The OxyChip is an implantable oxygen sensor that can detect tumor oxygen levels using electron paramagnetic resonance (EPR) oximetry. We report initial safety and feasibility outcomes after OxyChip implantation in a first-in-humans clinical trial (NCT02706197, www.clinicaltrials.gov). Materials and Methods: Twenty-four patients were enrolled. Eligible patients had a tumor ≤ 3 cm from the skin surface with planned surgical resection as part of standard-of-care therapy. Most patients had a squamous cell carcinoma of the skin (33%) or a breast malignancy (33%). After an initial cohort of six patients who received surgery alone, eligibility was expanded to patients receiving either chemotherapy or radiotherapy prior to surgical resection. The OxyChip was implanted into the tumor using an 18-G needle; a subset of patients had ultrasound-guided implantation. Electron paramagnetic resonance oximetry was carried out using a custom-built clinical EPR scanner. Patients were evaluated for associated toxicity using the Common Terminology Criteria for Adverse Events (CTCAE); evaluations started immediately after OxyChip placement, occurred during every EPR oximetry measurement, and continued periodically after removal. The OxyChip was removed during standard-of-care surgery, and pathologic analysis of the tissue surrounding the OxyChip was performed. Results: Eighteen patients received surgery alone, while five underwent chemotherapy and one underwent radiotherapy prior to surgery. No unanticipated serious adverse device events occurred. The maximum severity of any adverse event as graded by the CTCAE was 1 (least severe), and all were related to events typically associated with implantation. After surgical resection, 45% of the patients had no histopathologic findings specifically associated with the OxyChip. All tissue pathology was "anticipated" excepting a patient with greater than expected inflammatory findings, which was assessed to be related to the tumor as opposed to the OxyChip. Conclusion: This report of the first-in-humans trial of OxyChip implantation and EPR oximetry demonstrated no significant clinical pathology or unanticipated serious adverse device events. Use of the OxyChip in the clinic was thus safe and feasible.

13.
Physiol Rep ; 8(15): e14541, 2020 08.
Article in English | MEDLINE | ID: mdl-32786045

ABSTRACT

It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .


Subject(s)
Neoplasms/metabolism , Oxygen Consumption , Oxygen/analysis , Animals , Humans , Magnetic Resonance Imaging/methods , Neoplasms/diagnosis , Neoplasms/diagnostic imaging , Optical Imaging/methods , Oximetry/methods , Oxygen/blood
14.
Phys Med Biol ; 64(14): 145021, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31146269

ABSTRACT

The goal of this study was to test the utility of time-gated optical imaging of head and neck (HN) radiotherapy treatments to measure surface dosimetry in real-time and inform possible interfraction replanning decisions. The benefit of both Cherenkov and scintillator imaging in HN treatments is direct daily feedback on dose, with no change to the clinical workflow. Emission from treatment materials was characterized by measuring radioluminescence spectra during irradiation and comparing emission intensities relative to Cherenkov emission produced in phantoms and scintillation from small plastic targets. HN treatment plans were delivered to a phantom with bolus and mask present to measure impact on signal quality. Interfraction superficial tumor reduction was simulated on a HN phantom, and cumulative Cherenkov images were analyzed in the region of interest (ROI). HN human patient treatment was imaged through the mask and compared with the dose distribution calculated by the treatment planning system. The relative intensity of radioluminescence from the mask was found to be within 30% of the Cherenkov emission intensity from tissue-colored clay. A strong linear relationship between normalized cumulative Cherenkov intensity and tumor size was established ([Formula: see text]). The presence of a mask above a scintillator ROI was found to decrease mean pixel intensity by >40% and increase distribution spread. Cherenkov imaging through mask material is shown to have potential for surface field verification and tracking of superficial anatomy changes between treatment fractions. Imaging of scintillating targets provides a direct imaging of surface dose on the patient and through transparent bolus material. The first imaging of a patient receiving HN radiotherapy was achieved with a signal map which qualitatively matches the surface dose plan.


Subject(s)
Algorithms , Head and Neck Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Scintillation Counting/instrumentation , Electrons , Head and Neck Neoplasms/radiotherapy , Humans , Radiometry/methods , Radiotherapy Dosage , Scintillation Counting/methods
16.
Magn Reson Med ; 81(2): 781-794, 2019 02.
Article in English | MEDLINE | ID: mdl-30277275

ABSTRACT

PURPOSE: Transcutaneous oxygen tension (TcpO2 ) provides information about blood perfusion in the tissue immediately below the skin. These data are valuable in assessing wound healing problems, diagnosing peripheral vascular/arterial insufficiency, and predicting disease progression or the response to therapy. Currently, TcpO2 is primarily measured using electrochemical skin sensors, which consume oxygen and are prone to calibration errors. The goal of the present study was to develop a reliable method for TcpO2 measurement in human subjects. METHODS: We have developed a novel TcpO2 oximetry method based on electron paramagnetic resonance (EPR) principles with an oxygen-sensing skin adhesive film, named the superficial perfusion oxygen tension (SPOT) chip. The SPOT chip is a 3-mm diameter, 60-µm thick circular film composed of a stable paramagnetic oxygen sensor. The chip is covered with an oxygen-barrier material on one side and secured on the skin by a medical adhesive transfer tape to ensure that only the oxygen that diffuses through the skin surface is measured. The method quantifies TcpO2 through the linewidth of the EPR spectrum. RESULTS: Repeated measurements using a cohort of 10 healthy human subjects showed that the TcpO2 measurements were robust, reliable, and reproducible. The TcpO2 values ranged from 7.8 ± 0.8 to 22.0 ± 1.0 mmHg in the volar forearm skin (N = 29) and 8.1 ± 0.3 to 23.4 ± 1.3 mmHg in the foot (N = 86). CONCLUSIONS: The results demonstrated that the SPOT chip can measure TcpO2 reliably and repeatedly under ambient conditions. The SPOT chip method could potentially be used to monitor TcpO2 in the clinic.


Subject(s)
Oxygen/analysis , Skin/blood supply , Adhesives , Adolescent , Adult , Arterial Occlusive Diseases/physiopathology , Calibration , Cohort Studies , Electron Spin Resonance Spectroscopy , Female , Foot , Forearm , Healthy Volunteers , Humans , Male , Middle Aged , Oxygen/blood , Peripheral Vascular Diseases/physiopathology , Reproducibility of Results , Skin Physiological Phenomena , Temperature , Wound Healing , Young Adult
17.
Cell Biochem Biophys ; 75(3-4): 275-283, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28687906

ABSTRACT

Hypoxic tumors are more resistant to radiotherapy and chemotherapy, which decreases the efficacy of these common forms of treatment. We have been developing implantable paramagnetic particulates to measure oxygen in vivo using electron paramagnetic resonance. Once implanted, oxygen can be measured repeatedly and non-invasively in superficial tissues (<3 cm deep), using an electron paramagnetic resonance spectrometer and an external surface-loop resonator. To significantly extend the clinical applications of electron paramagnetic resonance oximetry, we developed an implantable resonator system to obtain measurements at deeper sites. This system has been used to successfully obtain oxygen measurements in animal studies for several years. We report here on recent developments needed to meet the regulatory requirements to make this technology available for clinical use. radio frequency heating is discussed and magnetic resonance compatibility testing of the device has been carried out by a Good Laboratory Practice-certified laboratory. The geometry of the implantable resonator has been modified to meet our focused goal of verifying safety and efficacy for the proposed use of intracranial measurements and also for future use in tissue sites other than the brain. We have encapsulated the device within a smooth cylindrical-shaped silicone elastomer to prevent tissues from adhering to the device and to limit perturbation of tissue during implantation and removal. We have modified the configuration for simultaneously measuring oxygen at multiple sites by developing a linear array of oxygen sensing probes, which each provide independent measurements. If positive results are obtained in additional studies which evaluate biocompatibility and chemical characterization, we believe the implantable resonator will be at a suitable stage for initial testing in human subjects.


Subject(s)
Electron Spin Resonance Spectroscopy , Oximetry , Oxygen/analysis , Animals , Equipment Design , Humans , Prostheses and Implants
18.
Int J Radiat Oncol Biol Phys ; 97(3): 481-486, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28126298

ABSTRACT

PURPOSE: To explore, in a dose-escalation study, the feasibility of hyperbaric oxygen (HBO) treatments immediately before intensity modulated radiation therapy in conjunction with cisplatinum chemotherapy for squamous cell carcinoma of the head and neck (SCCHN). METHODS AND MATERIALS: Eligible patients presented with SCCHN (stage III-IV [M0]), life expectancy >6 months, and Karnofsky performance status ≥70. Enrollees received intensity modulated radiation therapy, 70 Gy in 35 fractions over 7 weeks with weekly cisplatinum. Patients received HBO-100% oxygen, 2.4 atmospheres absolute (ATA) for 30 minutes-twice per week initially. Subsequent patients were escalated to 3 and then 5 times per week. Intensity modulated radiation therapy began within 15 minutes after HBO. Patients were followed for 2 years after RT with quality-of-life questionnaires (Performance Status Scale-Head and Neck Cancer and the Functional Assessment of Cancer Therapy-Head and Neck Cancer) and for 5+ years for local recurrence, distant metastases, disease-specific survival, and overall survival. RESULTS: Twelve subjects enrolled from 3 centers. Two withdrew during radiation therapy and 1 within 14 weeks after radiation therapy. The remaining 9 had primary oropharyngeal disease and were stage IVA (7) or IVB (2). No dose-limiting toxicities were observed with daily HBO. Two patients (22%) required pressure equalization tubes. The average time between HBO and radiation therapy was 8.5 minutes, with 2 of 231 administrations delivered beyond 15 minutes (0.5%). Per-protocol analysis showed a clinical complete response in 7 and a pathologic complete response without tumor in salvage neck dissections in 2. With minimum follow-up of 61 months, per-protocol 5-year overall survival was 100%, local recurrence 0%, and distant metastases 11%. Patient-reported outcomes for quality of life (Functional Assessment of Cancer Therapy-Head and Neck Cancer) were comparable to published results for chemoradiotherapy without HBO. CONCLUSIONS: While acknowledging the study's small size and early attrition of 3 patients, our in-depth review of the acquired data indicates the feasibility of combining HBO with chemoradiation.


Subject(s)
Carcinoma, Squamous Cell/therapy , Chemoradiotherapy/methods , Cisplatin/administration & dosage , Hyperbaric Oxygenation/methods , Oropharyngeal Neoplasms/therapy , Radiation-Sensitizing Agents/administration & dosage , Radiotherapy, Intensity-Modulated , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Dose Fractionation, Radiation , Drug Administration Schedule , Feasibility Studies , Female , Humans , Karnofsky Performance Status , Male , Middle Aged , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/pathology , Quality of Life , Time Factors
19.
Adv Exp Med Biol ; 923: 95-104, 2016.
Article in English | MEDLINE | ID: mdl-27526130

ABSTRACT

The first systematic multi-center study of the clinical use of EPR oximetry has begun, with funding as a PPG from the NCI. Using particulate oxygen sensitive EPR, materials in three complementary forms (India Ink, "OxyChips", and implantable resonators) the clinical value of the technique will be evaluated. The aims include using repeated measurement of tumor pO2 to monitor the effects of treatments on tumor pO2, to use the measurements to select suitable subjects for the type of treatment including the use of hyperoxic techniques, and to provide data that will enable existing clinical techniques which provide data relevant to tumor pO2 but which cannot directly measure it to be enhanced by determining circumstances where they can give dependable information about tumor pO2.


Subject(s)
Biomarkers, Tumor/metabolism , Carbon/administration & dosage , Electron Spin Resonance Spectroscopy , Metalloporphyrins/administration & dosage , Neoplasms/therapy , Oximetry/methods , Oxygen/metabolism , Belgium , Georgia , Humans , Neoplasms/metabolism , Neoplasms/pathology , New Hampshire , Partial Pressure , Predictive Value of Tests , Treatment Outcome , Tumor Hypoxia , Tumor Microenvironment
20.
Int J Gynecol Cancer ; 23(3): 559-66, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23385283

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the University of Alabama at Birmingham experience with routine intraoperative ultrasound (IUS)-guided tandem placement for cervical cancer. METHODS: Between 1999 and 2008, 243 cervical cancer patients underwent IUS-guided tandem placement. One hundred thirty-nine patients received low-dose-rate brachytherapy, and 104 received high-dose-rate brachytherapy. Three hundred fifty-six IUS-guided procedures were performed. Clinical and imaging data were retrospectively analyzed to evaluate complications requiring reinsertion of tandem placement in the context of IUS. RESULTS: All 243 cervical cancer patients completed intracavitary brachytherapy. Five (1.4%) of 356 IUS-guided applicator placements resulted in uterine perforation. All of these patients underwent successful tandem insertion on the second attempt, and no significant clinical sequelae occurred. Intraoperative ultrasound enabled direct uterine visualization and facilitated real-time feedback for selection of a suitable tandem length and curvature; no suboptimal placements requiring return to the operating room occurred (excluding perforation). CONCLUSIONS: In this large series, IUS guidance substantially increased the rate of successful applicator placement and diminished the rate of uterine perforation relative to historical controls. We strongly recommend the use of IUS guidance during operative intrauterine tandem placement for cervical cancer.


Subject(s)
Brachytherapy/instrumentation , Radiotherapy, Image-Guided , Uterine Cervical Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Brachytherapy/methods , Female , Follow-Up Studies , Humans , Intraoperative Care , Middle Aged , Neoplasm Staging , Prognosis , Radiotherapy Planning, Computer-Assisted , Retrospective Studies , Tomography, X-Ray Computed , Ultrasonography , Uterine Cervical Neoplasms/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...