Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 71(11): 2829-2836, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35348812

ABSTRACT

Tafasitamab is an Fc-modified monoclonal antibody that binds to CD19, a cell-surface antigen that is broadly expressed on various types of B-cell non-Hodgkin's lymphoma (NHL). Antibody-dependent cellular cytotoxicity (ADCC), a key mode of action of tafasitamab, is mediated through the binding of tafasitamab's Fc region to FcγRIIIa receptors on immune effector cells and results in antitumor activity. Despite the proven clinical activity of tafasitamab in combination with lenalidomide in the treatment of diffuse large B-cell lymphoma (DLBCL), a higher number of immune cells in cancer patients may improve the activity of tafasitamab. Here, we characterized two ex vivo-expanded FcγRIIIa receptor-expressing cell types-γδ T and MG4101 natural killer (NK) cells-as effector cells for tafasitamab in vitro, and found that in the presence of these cells tafasitamab was able to induce ADCC against a range of NHL cell lines and patient-derived cells. We also explored the concept of effector cell supplementation during tafasitamab treatment in vivo by coadministering MG4101 NK cells in Raji and Ramos xenograft models of NHL. Combination treatment of tafasitamab and allogeneic MG4101 NK cells in these models demonstrated a survival benefit compared with tafasitamab or MG4101 monotherapy (Raji: 1.7- to 1.9-fold increase in lifespan; Ramos: 2.0- to 4.1-fold increase in lifespan). In conclusion, adoptive cell transfer of ex vivo-expanded allogeneic NK or autologous γδ T cells in combination with tafasitamab treatment may potentially be a promising novel approach to increase the number of immune effector cells and enhance the antitumor effect of tafasitamab.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, Large B-Cell, Diffuse , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibody-Dependent Cell Cytotoxicity , Antigens, Surface , Cell- and Tissue-Based Therapy , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Lymphoma, Large B-Cell, Diffuse/drug therapy , Rituximab/pharmacology
2.
MAbs ; 8(4): 811-27, 2016.
Article in English | MEDLINE | ID: mdl-26984378

ABSTRACT

The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.


Subject(s)
Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , Pancreatic Neoplasms/immunology , Receptor, IGF Type 1/antagonists & inhibitors , Animals , Antibodies, Bispecific/biosynthesis , Antibody Affinity , Antibody-Dependent Cell Cytotoxicity , CHO Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetinae , Cricetulus , Humans , Mice , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
3.
J Biol Chem ; 289(27): 18693-706, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24841203

ABSTRACT

In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the "knob-into-hole" technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.


Subject(s)
Antibodies, Bispecific/immunology , ErbB Receptors/immunology , Immunoglobulin G/immunology , Protein Engineering , Receptor, IGF Type 1/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/metabolism , Antibodies, Bispecific/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/metabolism , Female , Gene Expression Regulation/drug effects , Glycosylation , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Mice , Pancreatic Neoplasms/pathology , Protein Multimerization , Protein Structure, Quaternary , Protein Transport/drug effects , Receptor, IGF Type 1/metabolism , Signal Transduction/drug effects , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Single-Chain Antibodies/pharmacology , Xenograft Model Antitumor Assays
4.
Arch Biochem Biophys ; 526(2): 206-18, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22464987

ABSTRACT

In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , ErbB Receptors/immunology , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Neoplasms/therapy , Receptor, IGF Type 1/immunology , Animals , Antibodies, Bispecific/genetics , Antibody Affinity , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cloning, Molecular , ErbB Receptors/metabolism , Female , Humans , Immunoglobulin G/genetics , Immunotherapy , Mice , Mice, SCID , Models, Molecular , Neoplasms/immunology , Neoplasms/metabolism , Phosphorylation/drug effects , Protein Engineering , Receptor, IGF Type 1/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/therapeutic use
5.
J Immunother ; 29(5): 477-88, 2006.
Article in English | MEDLINE | ID: mdl-16971804

ABSTRACT

Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM-CSF can synergize in antitumor activity and that with conventional dose regimens, their specific targeting to tumors, as tested here with 2 antibodies of different affinities, enhances their antitumor activity.


Subject(s)
Antigens, Neoplasm/biosynthesis , Antineoplastic Agents/therapeutic use , Cell Adhesion Molecules/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-2/genetics , Lung Neoplasms/drug therapy , Recombinant Fusion Proteins/therapeutic use , Animals , Antibodies, Neoplasm , Antigens, Neoplasm/genetics , Antineoplastic Agents/administration & dosage , Cell Adhesion Molecules/genetics , Cell Line , Cricetinae , Drug Delivery Systems , Epithelial Cell Adhesion Molecule , Female , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Humans , Immunotherapy, Active , Interleukin-2/administration & dosage , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Proteins , Transplantation, Heterologous , Xenograft Model Antitumor Assays
6.
Cancer Immun ; 6: 4, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16483188

ABSTRACT

Pro-inflammatory cytokines regulate the growth, differentiation, and activation of immune cells and can play a role in antitumor responses. GM-CSF and IL-2 induce tumor rejection in animal models when expressed by tumor cells, and IL-2 is used for the treatment of melanoma and renal cell cancer. However, high doses of GM-CSF and IL-2 are associated with severe side effects in cancer patients. We generated a dual cytokine fusion protein for simultaneous targeted delivery of human GM-CSF and IL-2 to human tumors. The fusion protein is based on a heterodimeric core structure formed by human CH1 and C kappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused human single-chain Ab fragments (scFv) specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). The dual cytokine heterominibody (DCH) was well expressed and secreted by CHO cells, preserved the specific proliferative activities of the two cytokines, and showed Ep-CAM-specific binding to tumor cells. DCH induced potent tumor cell lysis in vitro by two distinct mechanisms. One was activating PBMCs to lyse tumor cells, which was superior to cytotoxicity induced by equimolar ratios of free recombinant human IL-2 and GM-CSF. The other mechanism was redirected lysis, as seen with isolated human T cells, which was solely dependent on the IL-2 fusion part. The therapeutic principle of dual cytokine targeting may warrant in vivo testing of murine-specific analogues in appropriate mouse models and further preclinical development of the less immunogenic, human cytokine- and human Ep-CAM-specific DCH molecule described here.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell Adhesion Molecules/genetics , Drug Delivery Systems , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Interleukin-2/administration & dosage , Animals , Antibodies/administration & dosage , Antigens, Neoplasm/administration & dosage , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Antineoplastic Agents/immunology , CHO Cells , Cell Adhesion Molecules/administration & dosage , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/immunology , Cell Line, Tumor , Cricetinae , Cytotoxicity, Immunologic , Disease Models, Animal , Drug Combinations , Electrophoresis, Polyacrylamide Gel , Epithelial Cell Adhesion Molecule , Epithelial Cells/chemistry , Epithelial Cells/cytology , Genetic Variation , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Interleukin-2/analogs & derivatives , Interleukin-2/genetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Proteins , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...