Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Imaging Biol ; 26(1): 81-89, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38066252

ABSTRACT

PURPOSE: Radiolabeled PSMA-ligands play a major role in today's nuclear medicine. Since approval of [177Lu]Lu-PSMA-617 for therapy of metastatic prostate cancer, availability of 177Lu became bottleneck of supply due to the high demand. Recently, a theranostic PSMA-ligand, PSMA-GCK01, was developed which can be labeled either diagnostically with 99mTc or therapeutically with 188Re with both nuclides available from well-known generator systems. This novel tracer might aid to overcome aforementioned supply limitations. In this investigation, the biodistribution and general imaging characteristics of [99mTc]Tc-PSMA-GCK01 were compared with the diagnostic reference compound [99mTc]Tc-EDDA/HYNIC-iPSMA in patients with advanced stage prostate cancer. In addition, the binding of both ligands to PSMA was analyzed at the molecular level using molecular docking. PROCEDURES: Two cohorts (n = 19 vs. n = 21) of patients with metastatic castration-resistant prostate cancer matched for age, tumor stage, and Gleason score underwent a planar gamma camera imaging with [99mTc]Tc-EDDA/HYNIC-iPSMA or [99mTc]Tc-PSMA-GCK01 prior to PSMA-ligand therapy for PSMA-phenotyping. The imaging data were retrospective analyzed for salivary gland, kidney, liver, soft tissue, and tumor uptake on a semi-automated ROI-analysis using HERMES Medical Solutions AB (HMS, Sweden). RESULTS: The data sets were semi-automated quantified on a ROI-based analysis. The tumor-to-background presented equal results of [99mTc]Tc-PSMA-GCK01 compared to [99mTc]Tc-EDDA/HYNIC-iPSMA. The physiological PSMA-positive organs like salivary gland presented also equal uptake in counts/MBq (salivary gland median 9.48 [99mTc]Tc-PSMA-GCK01 vs. median 9.11 [99mTc]Tc-EDDA/HYNIC-iPSMA), while liver-to-kidney ratio presented a slight shift to the liver parenchyma using [99mTc]Tc-PSMA-GCK01 (0.83) compared to [99mTc]Tc-EDDA/HYNIC-iPSMA (0.55) with no statistical significance. This is in agreement with the results from the docking study revealing only a minor difference in the docking scores for both ligands. CONCLUSIONS: The novel theranostic tracer [99mTc]Tc/[188Re]Re-PSMA-GCK01 demonstrates comparable general imaging characteristic with the reference compound [99mTc]Tc-EDDA/HYNIC-iPSMA. These results pave the way for the PSMA-targeting imaging and theranostic agents for a broader, rather low-cost, generator applied radio-ligand therapy utilization.


Subject(s)
Edetic Acid/analogs & derivatives , Precision Medicine , Prostatic Neoplasms , Male , Humans , Tissue Distribution , Retrospective Studies , Ligands , Molecular Docking Simulation , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Radiopharmaceuticals
2.
ACS Chem Biol ; 18(2): 315-330, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36647580

ABSTRACT

During the replication process of SARS-CoV-2, the main protease of the virus [3-chymotrypsin-like protease (3CLpro)] plays a pivotal role and is essential for the life cycle of the pathogen. Numerous studies have been conducted so far, which have confirmed 3CLpro as an attractive drug target to combat COVID-19. We describe a novel and efficient next-generation sequencing (NGS) supported phage display selection strategy for the identification of a set of SARS-CoV-2 3CLpro targeting peptide ligands that inhibit the 3CL protease, in a competitive or noncompetitive mode, in the low µM range. From the most efficient l-peptides obtained from the phage display, we designed all-d-peptides based on the retro-inverso (ri) principle. They had IC50 values also in the low µM range and in combination, even in the sub-micromolar range. Additionally, the combination with Rutinprivir decreases 10-fold the IC50 value of the competitive inhibitor. The inhibition modes of these d-ri peptides were the same as their respective l-peptide versions. Our results demonstrate that retro-inverso obtained all-d-peptides interact with high affinity and inhibit the SARS-CoV-2 3CL protease, thus reinforcing their potential for further development toward therapeutic agents. The here described d-ri peptides address limitations associated with current l-peptide inhibitors and are promising lead compounds. Further optimization regarding pharmacokinetic properties will allow the development of even more potent d-peptides to be used for the prevention and treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases , Cysteine Endopeptidases/chemistry , Peptides/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...