Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Chemistry ; 27(69): 17351-17360, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34705314

ABSTRACT

The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P-H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2 Ph)(PPh2 NR)] (with R = SiMe3 or 4-C6 H4 -NO2 ) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P-H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P-H activation to form stable activation products.

2.
Chem Commun (Camb) ; 56(58): 8051-8054, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32539059

ABSTRACT

The isolation, structural characterization and coordination chemistry of a di(amino)-substituted carbodiphosphorane (CDP) are reported. Compared to the analogue, dianionic bis(iminophosphoryl)methandiides, the CDP is a stronger C-, but much weaker N-donor which led to the isolation of solely C-coordinated metal complexes amongst an unusual monomeric trigonal-planar L·ZnCl2 complex.

3.
ACS Catal ; 10(2): 999-1009, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32030314

ABSTRACT

Comprehensive mechanistic insights into the activity of different catalysts based on different ligands are important for further ligand design and catalyst improvement. Herein, we report a combined computational and experimental study on the mechanism and catalytic activity of the ylide-substituted phosphine Cy3P-C(Me)PCy2 (keYPhos, L1) in C-N coupling reactions including a comparison with the established and often-applied phosphines CyJohnPhos (L2) and P(tBu)3 (L3). Density functional theory (DFT) calculations together with the possible isolation of several intermediates within the catalytic cycle demonstrate that L1 readily forms low-coordinated palladium complexes [such as L1·Pd(dba)], which easily undergo oxidative addition and subsequent amine coordination as well as reductive elimination. Due to the possible opening and closing of the P-C-P angle in L1, the steric bulk can be adjusted to the metal environment so that L1 retains its conformation throughout the whole catalytic cycle, thus leading to fast catalysis at room temperature. Comparative studies of the three ligands with Pd2dba3 as a Pd source show that only L1 efficiently allows for the coupling of aryl chlorides at room temperature. DFT studies suggest that this is mainly due to the reluctance/inability of L2 and L3 to form the catalytically active species under these reaction conditions. In contrast, the YPhos ligand readily forms the prereactive complex and undergoes the first oxidative addition reaction. These observations are confirmed by kinetic studies, which indicate a short induction period for the formation of the catalytically active species of L1, followed by fast catalysis. This behavior of L1 is due to its unique electronic and steric properties, which support low activation barriers and fast catalyst generation.

4.
Angew Chem Int Ed Engl ; 58(22): 7459-7463, 2019 May 27.
Article in English | MEDLINE | ID: mdl-30901140

ABSTRACT

The preparation of the first stable diylide-substituted stannylene and germylene (Y2 E, with E=Ge, Sn and Y=[PPh3 -C-SO2 Tol]- ) is reported. The synthesis is easily accomplished in one step from the sulfonyl-substituted metalated ylide YNa and the corresponding ECl2 precursors. Y2 Ge and Y2 Sn exhibit unusual structures in the solid state and in solution, in which the three adjacent lone pairs in the C-E-C linkage are arranged coplanar to each other. As shown by DFT studies, this bonding situation is preferred over the typical π-donation from the ligands into the empty p-orbital at the metal due to the strong anion-stabilizing ability of the sulfonyl groups in the ylide backbone and their additional coordination to the metal. The alignment of the three lone pairs leads to a remarkable boost of the HOMO energy and thus of the donor strengths of the tetrylenes. Hence, Y2 Ge and Y2 Sn become stronger donors than their diamino or diaryl congeners and comparable to cyclic alkyl(amino)carbenes. First reactivity studies confirm the high reactivity of Y2 Ge and Y2 Sn, which for example undergo an intramolecular C-H activation reaction via metal-ligand cooperation.

5.
Chemistry ; 25(11): 2793-2802, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30556625

ABSTRACT

The isolation and structural characterization of the cyanido-substituted metalated ylides [Ph3 P-C-CN]M (1-M; M=Li, Na, K) are reported with lithium, sodium, and potassium as metal cations. In the solid-state, most different aggregates could be determined depending on the metal and additional Lewis bases. The crown-ether complexes of sodium (1-Na) and potassium (1-K) exhibited different structures, with sodium preferring coordination to the nitrogen end, whereas potassium binds in an unusual η2 -coordination mode to the two central carbon atoms. The formation of the yldiide was accompanied by structural changes leading to shorter C-C and longer C-N bonds. This could be attributed to the delocalization of the free electron pairs at the carbon atom into the antibonding orbitals of the CN moiety, which was confirmed by IR spectroscopy and computational studies. Detailed density functional theory calculations show that the changes in the structure and the bonding situation were most pronounced in the lithium compounds due to the higher covalency.

6.
Angew Chem Int Ed Engl ; 58(10): 3203-3207, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30451339

ABSTRACT

Ylide-functionalized phosphine ligands (YPhos) were rationally designed to fit the requirements of Buchwald-Hartwig aminations at room temperature. This ligand class combines a strong electron-donating ability comparable to NHC ligands with high steric demand similar to biaryl phosphines. The active Pd species are stabilized by agostic C-H⋅⋅⋅Pd rather than by Pd-arene interactions. The practical advantage of YPhos ligands arises from their easy and scalable synthesis from widely available, inexpensive starting materials. Benchmark studies showed that YPhos-Pd complexes are superior to the best-known phosphine ligands in room-temperature aminations of aryl chlorides. The utility of the catalysts was demonstrated by the synthesis of various arylamines in high yields within short reaction times.

7.
Angew Chem Int Ed Engl ; 57(39): 12859-12864, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-29862622

ABSTRACT

Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross-coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines are easily accessible via different synthetic routes from commercially available starting materials. Owing to the extra donation from the ylide group to the phosphorus center the ligands are unusually electron-rich and can thus function as strong electron donors. The donor capacity surpasses that of commonly used phosphines and carbenes and can easily be tuned by changing the substitution pattern at the ylidic carbon atom. The huge potential of ylide-functionalized phosphines in catalysis is demonstrated by their use in gold catalysis. Excellent performance at low catalyst loadings under mild reaction conditions is thus seen in different types of transformations.

8.
Chemistry ; 24(14): 3439-3443, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29345775

ABSTRACT

Cooperative B-H bond activation reactions with thio- and iminophosphoryl tethered ruthenium-carbene complexes are reported. The complexes show surprisingly different reactivities towards the commonly employed boranes CatBH, PinBH and BH3 ⋅LB as a result of different modes of metal-ligand cooperation. Although the iminophosphoryl system allows for selective 1,2-addition of the B-H bond across the Ru=C double bond, the sulfur analogue only delivers the 1,2-addition product for CatBH, whereas activation of BH3 and PinBH lead to further insertion reactions in one or more sides of the Ru-C-P-S-ring. The different reactivities can be explained by the differences in the electronics of the carbene complexes and the phosphoryl tether and by the Lewis acidities of the boranes. DFT calculations show that the mechanism of the reactions either proceeds by an addition across the Ru=C bond with different regioselectivities or across the Ru-S linkage.

9.
Inorg Chem ; 56(15): 8599-8607, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28240888

ABSTRACT

The development and design of new ligand systems with special donor properties has been essential for crucial advances made in main-group-element and transition-metal chemistry over the years. This Forum Article focuses on metalated ylides as novel ligand systems. These anionic congeners of bisylides possess likewise two lone pairs of electrons at the central carbon atom and can thus function as X,L-type ligands with strong donor abilities. This article highlights recent efforts in the isolation and application of metalated ylides with a focus on work from this laboratory. We summarize structural and electronic properties and their use in organic synthesis as well as main-group-element and transition-metal chemistry.

10.
Chemistry ; 23(18): 4422-4434, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28121371

ABSTRACT

Quantum chemical calculations have been carried out to study the electronic structure of metalated ylides particularly in comparison to their neutral analogues, the bisylides. A series of compounds of the general composition Ph3 P-C-L with L being either a neutral or an anionic ligand were analyzed and the impact of the nature of the substituent L and the total charge on the electronics and bonding situation was studied. The charge at the carbon atom as well as the dissociation energies, bond lengths, and Wiberg bond indices strongly depend on the nature of L. Here, not only the charge of the ligand but also the position of the charge within the ligand backbone plays an important role. Independent of the substitution pattern, the NBO analysis reveals the preference of unsymmetrical bonding situations (P=C-L or P-C=L) for almost all compounds. However, Lewis structures with two lone-pair orbitals at the central carbon atom are equally valid for the description of the bonding situation. This is confirmed by the pronounced lone-pair character of the frontier orbitals. Energy decomposition analysis mostly reveals the preference of several bonding situations, mostly with dative and ylidic electron-sharing bonds (e.g., P→C- -L). In general, the anionic systems show a higher preference of the ylidic bonding situations compared to the neutral analogues. However, in most of the cases different resonance structures have to be considered for the description of the "real" bonding situation.

SELECTION OF CITATIONS
SEARCH DETAIL