Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 14(7): 1252-1275, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38427556

ABSTRACT

Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process. We show that cross-talk between granulocytes and T cells is central to shaping an immunosuppressive microenvironment. Specifically, we identified the PD-1 and TIGIT signaling axes and the proinflammatory cytokine IL1ß as central players in the interactions between granulocytes and T cells. Targeting these pathways in vivo resulted in attenuated bone metastasis and improved survival, by reactivating antitumor immunity. Analysis of patient samples revealed that TIGIT and IL1ß are prominent in human bone metastasis. Our findings suggest that cotargeting immunosuppressive granulocytes and dysfunctional T cells may be a promising novel therapeutic strategy to inhibit bone metastasis. Significance: Temporal transcriptome profiling of the immune microenvironment in breast cancer bone metastasis revealed key communication pathways between dysfunctional T cells and myeloid derived suppressor cells. Cotargeting of TIGIT and IL1ß inhibited bone metastasis and improved survival. Validation in patient data implicated these targets as a novel promising approach to treat human bone metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Myeloid-Derived Suppressor Cells , Receptors, Immunologic , Animals , Mice , Female , Bone Neoplasms/secondary , Bone Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Tumor Microenvironment/immunology
2.
Cancer Discov ; 13(12): 2610-2631, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37756565

ABSTRACT

Cancer mortality primarily stems from metastatic recurrence, emphasizing the urgent need for developing effective metastasis-targeted immunotherapies. To better understand the cellular and molecular events shaping metastatic niches, we used a spontaneous breast cancer lung metastasis model to create a single-cell atlas spanning different metastatic stages and regions. We found that premetastatic lungs are infiltrated by inflammatory neutrophils and monocytes, followed by the accumulation of suppressive macrophages with the emergence of metastases. Spatial profiling revealed that metastasis-associated immune cells were present in the metastasis core, with the exception of TREM2+ regulatory macrophages uniquely enriched at the metastatic invasive margin, consistent across both murine models and human patient samples. These regulatory macrophages (Mreg) contribute to the formation of an immune-suppressive niche, cloaking tumor cells from immune surveillance. Our study provides a compendium of immune cell dynamics across metastatic stages and niches, informing the development of metastasis-targeting immunotherapies. SIGNIFICANCE: Temporal and spatial single-cell analysis of metastasis stages revealed new players in modulating immune surveillance and suppression. Our study highlights distinct populations of TREM2 macrophages as modulators of the microenvironment in metastasis, and as the key immune determinant defining metastatic niches, pointing to myeloid checkpoints to improve therapeutic strategies. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Mice , Humans , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lung Neoplasms/pathology , Lung/pathology , Macrophages , Tumor Microenvironment , Neoplasm Metastasis/pathology , Membrane Glycoproteins , Receptors, Immunologic
3.
Cancers (Basel) ; 15(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36765677

ABSTRACT

Acute Myeloid Leukemia (AML) is a severe disease with a very high relapse rate. AML relapse may be attributable to leukemic stem cells (LSC). Notably, the "cancer stem cell" theory, which relates to LSCs, is controversial and criticized due to the technical peculiarities of the xenotransplant of human cells into mice. In this study, we searched for possible LSCs in an immunocompetent synergetic mice model. First, we found phenotypic heterogeneity in the ML23 leukemia line. We prospectively isolated a sub-population using the surface markers cKit+CD9-CD48+Mac1-/low, which have the potency to relapse the disease. Importantly, this sub-population can pass in syngeneic hosts and retrieve the heterogeneity of the parental ML23 leukemia line. The LSC sub-population resides in various organs. We present a unique gene expression signature of the LSC in the ML23 model compared to the other sub-populations. Interestingly, the ML23 LSC sub-population expresses therapeutic targeted genes such as CD47 and CD93. Taken together, we present the identification and molecular characterization of LSCs in a syngeneic murine model.

4.
Nat Commun ; 13(1): 5797, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36184683

ABSTRACT

Mortality from breast cancer is almost exclusively a result of tumor metastasis and resistance to therapy and therefore understanding the underlying mechanisms is an urgent challenge. Chemotherapy, routinely used to treat breast cancer, induces extensive tissue damage, eliciting an inflammatory response that may hinder efficacy and promote metastatic relapse. Here we show that systemic treatment with doxorubicin, but not cisplatin, following resection of a triple-negative breast tumor induces the expression of complement factors in lung fibroblasts and modulates an immunosuppressive metastatic niche that supports lung metastasis. Complement signaling derived from cancer-associated fibroblasts (CAFs) mediates the recruitment of myeloid-derived suppressor cells (MDSCs) to the metastatic niche, thus promoting T cell dysfunction. Pharmacological targeting of complement signaling in combination with chemotherapy alleviates immune dysregulation and attenuates lung metastasis. Our findings suggest that combining cytotoxic treatment with blockade of complement signaling in triple-negative breast cancer patients may attenuate the adverse effects of chemotherapy, thus offering a promising approach for clinical use.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Lung Neoplasms , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , Humans , Immunosuppression Therapy , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/drug therapy , Triple Negative Breast Neoplasms/pathology
5.
Elife ; 102021 06 25.
Article in English | MEDLINE | ID: mdl-34169837

ABSTRACT

Mortality from breast cancer is almost exclusively a result of tumor metastasis, and lungs are one of the main metastatic sites. Cancer-associated fibroblasts are prominent players in the microenvironment of breast cancer. However, their role in the metastatic niche is largely unknown. In this study, we profiled the transcriptional co-evolution of lung fibroblasts isolated from transgenic mice at defined stage-specific time points of metastases formation. Employing multiple knowledge-based platforms of data analysis provided powerful insights on functional and temporal regulation of the transcriptome of fibroblasts. We demonstrate that fibroblasts in lung metastases are transcriptionally dynamic and plastic, and reveal stage-specific gene signatures that imply functional tasks, including extracellular matrix remodeling, stress response, and shaping the inflammatory microenvironment. Furthermore, we identified Myc as a central regulator of fibroblast rewiring and found that stromal upregulation of Myc transcriptional networks is associated with disease progression in human breast cancer.


Subject(s)
Fibroblasts/pathology , Lung Neoplasms/secondary , Lung/pathology , Transcriptome , Tumor Microenvironment/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Mice , Mice, Transgenic
6.
Cell Death Dis ; 12(2): 193, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602907

ABSTRACT

Animal models are necessary to study cancer and develop treatments. After decades of intensive research, effective treatments are available for only a few types of leukemia, while others are currently incurable. Our goal was to generate novel leukemia models in immunocompetent mice. We had achieved abilities for overexpression of multiple driving oncogenes simultaneously in normal primary cells, which can be transplanted and followed in vivo. Our experiments demonstrated the induction of primary malignant growth. Leukemia lines that model various types of leukemia, such as acute myeloid leukemia (AML) or chronic lymphocytic leukemia (CLL), were passaged robustly in congenic wild-type immunocompetent mice. These novel leukemia lines, which may complement previous models, offer the flexibility to generate tailored models of defined oncogenes of interest. The characterization of our leukemia models in immunocompetent animals can uncover the mechanisms of malignancy progression and offer a unique opportunity to stringently test anti-cancer chemotherapies.


Subject(s)
Cell Transformation, Viral , Hematopoietic Stem Cells/virology , Lentivirus/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Myeloid, Acute/genetics , Oncogenes , Animals , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/pathology , Immunocompetence , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/virology , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Transplantation, Isogeneic , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...