Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Indoor Air ; 32(7): e13057, 2022 07.
Article in English | MEDLINE | ID: mdl-35904386

ABSTRACT

We surveyed literature on measurements of indoor particulate matter in all size fractions, in residential environments free of solid fuel combustion (other than wood for recreation or space heating). Data from worldwide studies from 1990 to 2019 were assembled into the most comprehensive collection to date. Out of 2752 publications retrieved, 538 articles from 433 research projects met inclusion criteria and reported unique data, from which more than 2000 unique sets of indoor PM measurements were collected. Distributions of mean concentrations were compiled, weighted by study size. Long-term trends, the impact of non-smoking, air cleaners, and the influence of outdoor PM were also evaluated. Similar patterns of indoor PM distributions for North America and Europe could reflect similarities in the indoor environments of these regions. Greater observed variability for all regions of Asia may reflect greater heterogeneity in indoor conditions, but also low numbers of studies for some regions. Indoor PM concentrations of all size fractions were mostly stable over the survey period, with the exception of observed declines in PM2.5 in European and North American studies, and in PM10 in North America. While outdoor concentrations were correlated with indoor concentrations across studies, indoor concentrations had higher variability, illustrating a limitation of using outdoor measurements to approximate indoor PM exposures.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Heating , Particle Size , Particulate Matter/analysis
2.
J Phys Chem A ; 122(35): 7062-7070, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30095914

ABSTRACT

Uranium dioxide (UO2) is a material with historical and emerging applications in numerous areas such as photonics, nuclear energy, and aerospace electronics. While often grown synthetically as single-crystal UO2, the mineralogical form of UO2 called uraninite is of interest as a precursor to various chemical processes involving uranium-bearing chemicals. Here, we investigate the optical and chemical properties of a series of three UO2 specimens: synthetic single-crystal UO2, uraninite ore of relatively high purity, and massive uraninite mineral containing numerous impurities. An optical technique called single-angle reflectance spectroscopy was used to derive the optical constants n and k of these uranium specimens by measuring the specular reflectance spectra of a polished surface across the mid- and far-infrared spectral domains (ca. 7000-50 cm-1). X-ray diffractometry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were further used to analyze the surface composition of the mineralogical forms of UO2. Most notably, the massive uraninite mineral was observed to contain significant deposits of calcite and quartz in addition to UO2 (as well as other metal oxides and radioactive decay products). Knowledge of the infrared optical constants for this series of uranium chemicals facilitates nondestructive, noncontact detection of UO2 under a variety of conditions.

3.
Appl Opt ; 57(22): 6587-6597, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30117900

ABSTRACT

Single-angle infrared (IR) reflectance spectroscopy is a proven and effective method for determining the complex optical constants n and k of condensed matter. The modern method uses a Fourier transform IR spectrometer to record the quantitative reflectance R(ν) spectra followed by application of the Kramers-Kronig transform (KKT) to obtain the complex optical constants. In order to carry out the KKT, it is essential to measure the reflectance spectra to as high and low a frequency (wavenumber) as possible. Traditionally, the reflectance spectra of solid specimens consist of large (typically>10 mm diameter) polished single-crystal faces free of defects or voids. The requirement of a large polished face, however, is not a realistic expectation for many synthetic, geologic, or rare specimens where the size is usually small and the morphology can vary. In this paper we discuss several improvements and considerations to both the hardware and far-IR measurement protocols that lead to more accurate R(ν) values and thus to more accurate n/k values, especially for small (millimeter-sized) specimens where the R(ν) spectrum is concatenated from multiple independent R(ν) spectra from overlapping hardware/spectral domains. Specifically, the improved hardware and analyses introduced here include the following: (1) providing a set of far-IR calibration standards; (2) custom-designing and manufacturing low reflectivity, stray-light reducing sample masks for small specimens; (3) minimizing stray light interaction between the sample mask, the interferometer Jacquinot stop, and the detector; (4) optimizing the methods to "splice" together the spectra from independent domains; (5) discussing what methods one can use to obtain or calculate the important R(0 cm-1) value; (6) using a quartic relationship to extrapolate from the measured R data to R(0); and (7) accounting for the limiting effects of diffraction for the spot size at the sample mask and detector for millimeter-sized specimens, especially at the very long wavelengths. These seven considerations are all highly interconnected and are discussed in turn, as well as their strong interdependencies. This paper presents a holistic approach for determining reliable n/k values of millimeter-sized samples using single-angle reflectance in the mid- and far-IR.

4.
Environ Sci Technol ; 51(17): 9633-9643, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28742971

ABSTRACT

Humic acid (HA) is thought to promote NO2 conversion to nitrous acid (HONO) on soil surfaces during the day. However, it has proven difficult to identify the reactive sites in natural HA substrates. The mechanism of NO2 reduction on soil surrogates composed of HA and clay minerals was studied by use of a coated-wall flow reactor and cavity-enhanced spectroscopy. Conversion of NO2 to HONO in the dark was found to be significant and correlated to the abundance of C-O moieties in HA determined from the X-ray photoelectron spectra of the C 1s region. Twice as much HONO was formed when NO2 reacted with HA that was photoreduced by irradiation with UV-visible light compared to the dark reaction; photochemical reactivity was correlated to the abundance of C═O moieties rather than C-O groups. Bulk electrolysis was used to generate HA in a defined reduction state. Electrochemically reduced HA enhanced NO2-to-HONO conversion by a factor of 2 relative to non-reduced HA. Our findings suggest that hydroquinones and benzoquinones, which are interchangeable via redox equilibria, contribute to both thermal and photochemical HONO formation. This conclusion is supported by experiments that studied NO2 reactivity on mineral surfaces coated with the model quinone, juglone. Results provide further evidence that redox-active sites on soil surfaces drive ground-level NO2-to-nitrite conversion in the atmospheric boundary layer throughout the day, while amphoteric mineral surfaces promote the release of nitrite formed as gaseous HONO.


Subject(s)
Nitrous Acid , Quinones/chemistry , Nitrites , Oxidation-Reduction , Soil
5.
Environ Sci Technol ; 49(23): 13825-34, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26248160

ABSTRACT

Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Microbial Consortia/genetics , Nitrous Acid , Soil Microbiology , Agriculture , Archaea/genetics , Atmosphere/chemistry , Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Genomics/methods , Indiana , Microbial Consortia/physiology , Nitrification , Nitrogen Isotopes/analysis , Nitrous Acid/metabolism , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Urbanization
6.
Environ Sci Technol ; 48(20): 11991-2001, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25271384

ABSTRACT

Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.


Subject(s)
Nitrates/chemistry , Nitrogen Dioxide/chemistry , Nitrous Acid/chemistry , Photolysis , Aerosols/chemistry , Nitrogen Oxides/chemistry , Photochemistry/methods , Solutions/chemistry , Water/chemistry
7.
J Am Chem Soc ; 135(23): 8606-15, 2013 Jun 12.
Article in English | MEDLINE | ID: mdl-23721064

ABSTRACT

Ammonia is the most abundant reduced nitrogen species in the atmosphere and an important precursor in the industrial-scale production of nitric acid. A coated-wall flow tube coupled to a chemiluminescence NOx analyzer was used to study the kinetics of NH3 uptake and NOx formation from photochemistry initiated on irradiated (λ > 290 nm) TiO2 surfaces under atmospherically relevant conditions. The speciation of NH3 on TiO2 surfaces in the presence of surface-adsorbed water was determined using diffuse reflection infrared Fourier transform spectroscopy. The uptake kinetics exhibit an inverse dependence on NH3 concentration as expected for reactions proceeding via a Langmuir-Hinshelwood mechanism. The mechanism of NOx formation is shown to be humidity dependent: Water-catalyzed reactions promote NOx formation up to a relative humidity of 50%. Less NOx is formed above 50%, where increasing amounts of adsorbed water may hinder access to reactive sites, promote formation of unreactive NH4(+), and reduce oxidant levels due to higher OH radical recombination rates. A theoretical study of the reaction between the NH2 photoproduct and O2 in the presence of H2O supports the experimental conclusion that NOx formation is catalyzed by water. Calculations at the MP2 and CCSD(T) level on the bare NH2 + O2 reaction and the reaction of NH2 + O2 in small water clusters were carried out. Solvation of NH2OO and NHOOH intermediates likely facilitates isomerization via proton transfer along water wires, such that the steps leading ultimately to NO are exothermic. These results show that photooxidation of low levels of NH3 on TiO2 surfaces represents a source of atmospheric NOx, which is a precursor to ozone. The proposed mechanism may be broadly applicable to dissociative chemisorption of NH3 on other metal oxide surfaces encountered in rural and urban environments and employed in pollution control applications (selective catalytic oxidation/reduction) and during some industrial processes.


Subject(s)
Ammonia/chemistry , Atmosphere/chemistry , Nitric Oxide/chemical synthesis , Nitrogen Dioxide/chemical synthesis , Titanium/chemistry , Nitric Oxide/chemistry , Nitrogen Dioxide/chemistry , Oxidation-Reduction , Photochemical Processes , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...